bigdecimal/arithmetic/
sqrt.rs

1//! square root implementation
2
3use crate::*;
4
5
6pub(crate) fn impl_sqrt(n: &BigUint, scale: i64, ctx: &Context) -> BigDecimal {
7    // Calculate the number of digits and the difference compared to the scale
8    let num_digits = count_decimal_digits_uint(n);
9    let scale_diff = BigInt::from(num_digits) - scale;
10
11    // Calculate the number of wanted digits and the exponent we need to raise the original value to
12    // We want twice as many digits as the precision because sqrt halves the number of digits
13    // We add an extra one for rounding purposes
14    let prec = ctx.precision().get();
15    let extra_rounding_digit_count = 5;
16    let wanted_digits = 2 * (prec + extra_rounding_digit_count);
17    let exponent = wanted_digits.saturating_sub(num_digits) + u64::from(scale_diff.is_odd());
18    let sqrt_digits = (n * ten_to_the_uint(exponent)).sqrt();
19
20    // Calculate the scale of the result
21    let result_scale_digits = 2 * (2 * prec - scale_diff) - 1;
22    let result_scale_decimal: BigDecimal = BigDecimal::new(result_scale_digits, 0) / 4.0;
23    let mut result_scale = result_scale_decimal.with_scale_round(0, RoundingMode::HalfEven).int_val;
24
25    // Round the value so it has the correct precision requested
26    result_scale += count_decimal_digits_uint(&sqrt_digits).saturating_sub(prec);
27    let unrounded_result = BigDecimal::new(sqrt_digits.into(), result_scale.to_i64().unwrap());
28    unrounded_result.with_precision_round(ctx.precision(), ctx.rounding_mode())
29}
30
31#[cfg(test)]
32mod test {
33    use super::*;
34
35    macro_rules! impl_case {
36        ($name:ident; $input:literal => $expected:literal) => {
37            #[test]
38            fn $name() {
39                let n: BigDecimal = $input.parse().unwrap();
40                let value = n.sqrt().unwrap();
41
42                let expected = $expected.parse().unwrap();
43                assert_eq!(value, expected);
44                // assert_eq!(value.scale, expected.scale);
45            }
46        };
47        ($name:ident; prec=$prec:literal; round=$round:ident; $input:literal => $expected:literal) => {
48            #[test]
49            fn $name() {
50                let ctx = Context::default()
51                                .with_prec($prec).unwrap()
52                                .with_rounding_mode(RoundingMode::$round);
53                let n: BigDecimal = $input.parse().unwrap();
54                let value = n.sqrt_with_context(&ctx).unwrap();
55
56                let expected = $expected.parse().unwrap();
57                assert_eq!(value, expected);
58                // assert_eq!(value.scale, expected.scale);
59            }
60        };
61    }
62
63    impl_case!(case_0d000; "0.000" => "0");
64    impl_case!(case_1en232; "1e-232" => "1e-116");
65    impl_case!(case_1d00; "1.00" => "1.00");
66    impl_case!(case_1d001; "1.001" => "1.000499875062460964823258287700109753027590031219780479551442971840836093890879944856933288426795152");
67    impl_case!(case_100d0; "100" => "10.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000");
68    impl_case!(case_49; "49" => "7.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000");
69    impl_case!(case_d25; ".25" => ".5");
70    impl_case!(case_0d0152399025; "0.0152399025" => ".12345");
71    impl_case!(case_0d00400; "0.00400" => "0.06324555320336758663997787088865437067439110278650433653715009705585188877278476442688496216758600590");
72    impl_case!(case_0d1; "0.1" => "0.3162277660168379331998893544432718533719555139325216826857504852792594438639238221344248108379300295");
73    impl_case!(case_152399025; "152399025" => "12345");
74    impl_case!(case_2; "2" => "1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573");
75    impl_case!(case_125348; "125348" => "354.0451948551201563108487193176101314241016013304294520812832530590100407318465590778759640828114535");
76    impl_case!(case_121d000242000121; "121.000242000121000000" => "11.000011000");
77    impl_case!(case_0d01234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901; "0.01234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901" => "0.1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111");
78    impl_case!(case_2e70; "2e70" => "141421356237309504880168872420969807.8569671875376948073176679737990732478462107038850387534327641573");
79    impl_case!(case_8d9793115997963468544185161590576171875en11; "8.9793115997963468544185161590576171875e-11" => "0.000009475922962855041517561783740144225422359796851494316346796373337470068631250135521161989831460407155");
80    impl_case!(case_18446744073709551616d1099511; "18446744073709551616.1099511" => "4294967296.000000000012799992691725492477397918722952224079252026972356303360555051219312462698703293");
81
82    impl_case!(case_3d1415926; "3.141592653589793115997963468544185161590576171875" => "1.772453850905515992751519103139248439290428205003682302442979619028063165921408635567477284443197875");
83    impl_case!(case_0d71777001; "0.7177700109762963922745342343167413624881759290454997218753321040760896053150388903350654937434826216803814031987652326749140535150336357405672040727695124057298138872112244784753994931999476811850580200000000000000000000000000000000" => "0.8472130847527653667042980517799020703921106560594525833177762276594388966885185567535692987624493813");
84    impl_case!(case_0d110889ddd444; "0.1108890000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000444" => "0.3330000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000667");
85
86    impl_case!(case_3e170; "3e170" => "17320508075688772935274463415058723669428052538103806280558069794519330169088000370811.46186757248576");
87    impl_case!(case_9e199; "9e199" => "9486832980505137995996680633298155601158665417975650480572514558377783315917714664032744325137900886");
88    impl_case!(case_7e200; "7e200" => "2645751311064590590501615753639260425710259183082450180368334459201068823230283627760392886474543611e1");
89    impl_case!(case_777e204; "777e204" => "2.787471972953270789531596912111625325974789615194854615319795902911796043681078997362635440358922503E+103");
90    impl_case!(case_777e600; "7e600" => "2.645751311064590590501615753639260425710259183082450180368334459201068823230283627760392886474543611E+300");
91    impl_case!(case_2e900; "2e900" => "1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573E+450");
92    impl_case!(case_7e999; "7e999" => "8.366600265340755479781720257851874893928153692986721998111915430804187725943170098308147119649515362E+499");
93    impl_case!(case_74908163946345982392040522594123773796e999; "74908163946345982392040522594123773796e999" => "2.736935584670307552030924971360722787091742391079630976117950955395149091570790266754718322365663909E+518");
94    impl_case!(case_20e1024; "20e1024" => "4.472135954999579392818347337462552470881236719223051448541794490821041851275609798828828816757564550E512");
95    impl_case!(case_3en1025; "3e-1025" => "5.477225575051661134569697828008021339527446949979832542268944497324932771227227338008584361638706258E-513");
96
97    impl_case!(case_3242053850483855en13_prec11_round_down; prec=11; round=Down; "324.2053850483855" => "18.005704236");
98    impl_case!(case_3242053850483855en13_prec11_round_up; prec=11; round=Up; "324.2053850483855" => "18.005704237");
99    impl_case!(case_3242053850483855en13_prec31_round_up; prec=31; round=Up; "324.2053850483855" => "18.00570423639090823994825477228");
100
101    impl_case!(case_5d085019992340351en10_prec25_round_down; prec=25; round=Down; "5.085019992340351e-10" => "0.00002254998889653906459324292");
102
103    impl_case!(case_3025d13579652399025_prec3_round_up; prec=3; round=Up; "3025.13579652399025" => "55.1");
104
105    impl_case!(case_3025d13579652399025_prec9_round_down; prec=9; round=Down; "3025.13579652399025" => "55.0012345");
106    impl_case!(case_3025d13579652399025_prec9_round_up; prec=9; round=Up; "3025.13579652399025" => "55.0012345");
107
108    impl_case!(case_3025d13579652399025_prec8_round_halfdown; prec=8; round=HalfDown; "3025.13579652399025" => "55.001234");
109    impl_case!(case_3025d13579652399025_prec8_round_halfeven; prec=8; round=HalfEven; "3025.13579652399025" => "55.001234");
110    impl_case!(case_3025d13579652399025_prec8_round_halfup; prec=8; round=HalfUp; "3025.13579652399025" => "55.001235");
111
112    #[test]
113    fn test_sqrt_rounding() {
114        let vals = vec![
115            // sqrt(1.21) = 1.1, [Ceiling, Up] should round up
116            ("1.21", "2", "1", "1", "1", "1", "1", "2"),
117            // sqrt(2.25) = 1.5, [Ceiling, HalfEven, HalfUp, Up] should round up
118            ("2.25", "2", "1", "1", "1", "2", "2", "2"),
119            // sqrt(6.25) = 2.5, [Ceiling, HalfUp, Up] should round up
120            ("6.25", "3", "2", "2", "2", "2", "3", "3"),
121            // sqrt(8.41) = 2.9, [Ceiling, HalfDown, HalfEven, HalfUp, Up] should round up
122            ("8.41", "3", "2", "2", "3", "3", "3", "3"),
123        ];
124        for &(val, ceiling, down, floor, half_down, half_even, half_up, up) in vals.iter() {
125            let val = BigDecimal::from_str(val).unwrap();
126            let ceiling = BigDecimal::from_str(ceiling).unwrap();
127            let down = BigDecimal::from_str(down).unwrap();
128            let floor = BigDecimal::from_str(floor).unwrap();
129            let half_down = BigDecimal::from_str(half_down).unwrap();
130            let half_even = BigDecimal::from_str(half_even).unwrap();
131            let half_up = BigDecimal::from_str(half_up).unwrap();
132            let up = BigDecimal::from_str(up).unwrap();
133            let ctx = Context::default().with_prec(1).unwrap();
134            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Ceiling)).unwrap(), ceiling);
135            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Down)).unwrap(), down);
136            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Floor)).unwrap(), floor);
137            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::HalfDown)).unwrap(), half_down);
138            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::HalfEven)).unwrap(), half_even);
139            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::HalfUp)).unwrap(), half_up);
140            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Up)).unwrap(), up);
141        }
142    }
143
144    #[cfg(property_tests)]
145    mod prop {
146        use super::*;
147        use proptest::*;
148        use num_traits::FromPrimitive;
149
150        proptest! {
151            #[test]
152            fn sqrt_of_square_is_self(f: f64, prec in 15..50u64) {
153                // ignore non-normal numbers
154                prop_assume!(f.is_normal());
155
156                let n = BigDecimal::from_f64(f.abs()).unwrap().with_prec(prec);
157                let n_squared = n.square();
158                let x = n_squared.sqrt().unwrap();
159                prop_assert_eq!(x, n);
160            }
161        }
162    }
163}