bigdecimal/
impl_num.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//! Code for num_traits

use num_traits::{Num, FromPrimitive, ToPrimitive, AsPrimitive};
use num_bigint::{BigInt, Sign, ToBigInt};

use stdlib::str::FromStr;
use stdlib::string::{String, ToString};
use stdlib::convert::TryFrom;
use stdlib::ops::Neg;

use crate::BigDecimal;
use crate::ParseBigDecimalError;

#[cfg(not(feature = "std"))]
// f64::powi is only available in std, no_std must use libm
fn powi(x: f64, n: f64) -> f64 {
    libm::pow(x, n)
}

#[cfg(feature = "std")]
fn powi(x: f64, n: i32) -> f64 {
    x.powi(n)
}

impl Num for BigDecimal {
    type FromStrRadixErr = ParseBigDecimalError;

    /// Creates and initializes a BigDecimal.
    #[inline]
    fn from_str_radix(s: &str, radix: u32) -> Result<BigDecimal, ParseBigDecimalError> {
        if radix != 10 {
            return Err(ParseBigDecimalError::Other(String::from(
                "The radix for decimal MUST be 10",
            )));
        }

        let exp_separator: &[_] = &['e', 'E'];

        // split slice into base and exponent parts
        let (base_part, exponent_value) = match s.find(exp_separator) {
            // exponent defaults to 0 if (e|E) not found
            None => (s, 0),

            // split and parse exponent field
            Some(loc) => {
                // slice up to `loc` and 1 after to skip the 'e' char
                let (base, e_exp) = s.split_at(loc);
                (base, i128::from_str(&e_exp[1..])?)
            }
        };

        // TEMPORARY: Test for emptiness - remove once BigInt supports similar error
        if base_part.is_empty() {
            return Err(ParseBigDecimalError::Empty);
        }

        let mut digit_buffer = String::new();

        let last_digit_loc = base_part.len() - 1;

        // split decimal into a digit string and decimal-point offset
        let (digits, decimal_offset) = match base_part.find('.') {
            // No dot! pass directly to BigInt
            None => (base_part, 0),
            // dot at last digit, pass all preceding digits to BigInt
            Some(loc) if loc == last_digit_loc => {
                (&base_part[..last_digit_loc], 0)
            }
            // decimal point found - necessary copy into new string buffer
            Some(loc) => {
                // split into leading and trailing digits
                let (lead, trail) = (&base_part[..loc], &base_part[loc + 1..]);

                digit_buffer.reserve(lead.len() + trail.len());
                // copy all leading characters into 'digits' string
                digit_buffer.push_str(lead);
                // copy all trailing characters after '.' into the digits string
                digit_buffer.push_str(trail);

                // count number of trailing digits
                let trail_digits = trail.chars().filter(|c| *c != '_').count();

                (digit_buffer.as_str(), trail_digits as i128)
            }
        };

        // Calculate scale by subtracing the parsed exponential
        // value from the number of decimal digits.
        // Return error if anything overflows outside i64 boundary.
        let scale = decimal_offset
                    .checked_sub(exponent_value)
                    .and_then(|scale| scale.to_i64())
                    .ok_or_else(||
                        ParseBigDecimalError::Other(
                            format!("Exponent overflow when parsing '{}'", s))
                    )?;

        let big_int = BigInt::from_str_radix(digits, radix)?;

        Ok(BigDecimal::new(big_int, scale))
    }
}

impl ToPrimitive for BigDecimal {
    fn to_i64(&self) -> Option<i64> {
        match self.sign() {
            Sign::Minus | Sign::Plus => self.with_scale(0).int_val.to_i64(),
            Sign::NoSign => Some(0),
        }
    }
    fn to_i128(&self) -> Option<i128> {
        match self.sign() {
            Sign::Minus | Sign::Plus => self.with_scale(0).int_val.to_i128(),
            Sign::NoSign => Some(0),
        }
    }
    fn to_u64(&self) -> Option<u64> {
        match self.sign() {
            Sign::Plus => self.with_scale(0).int_val.to_u64(),
            Sign::NoSign => Some(0),
            Sign::Minus => None,
        }
    }
    fn to_u128(&self) -> Option<u128> {
        match self.sign() {
            Sign::Plus => self.with_scale(0).int_val.to_u128(),
            Sign::NoSign => Some(0),
            Sign::Minus => None,
        }
    }

    fn to_f64(&self) -> Option<f64> {
        self.int_val.to_f64().map(|x| x * powi(10f64, self.scale.neg().as_()))
    }
}


impl FromPrimitive for BigDecimal {
    #[inline]
    fn from_i64(n: i64) -> Option<Self> {
        Some(BigDecimal::from(n))
    }

    #[inline]
    fn from_u64(n: u64) -> Option<Self> {
        Some(BigDecimal::from(n))
    }

    #[inline]
    fn from_i128(n: i128) -> Option<Self> {
        Some(BigDecimal::from(n))
    }

    #[inline]
    fn from_u128(n: u128) -> Option<Self> {
        Some(BigDecimal::from(n))
    }

    #[inline]
    fn from_f32(n: f32) -> Option<Self> {
        BigDecimal::try_from(n).ok()
    }

    #[inline]
    fn from_f64(n: f64) -> Option<Self> {
        BigDecimal::try_from(n).ok()
    }
}

impl ToBigInt for BigDecimal {
    fn to_bigint(&self) -> Option<BigInt> {
        Some(self.with_scale(0).int_val)
    }
}


#[cfg(test)]
mod test {
    use super::*;

    mod from_str_radix {
        use super::*;

        #[test]
        fn out_of_bounds() {
            let d = BigDecimal::from_str_radix("1e-9223372036854775808", 10);
            assert_eq!(d.unwrap_err(), ParseBigDecimalError::Other("Exponent overflow when parsing '1e-9223372036854775808'".to_string()));

        }
    }
}