diesel/expression/
mod.rs

1//! AST types representing various typed SQL expressions.
2//!
3//! Almost all types implement either [`Expression`] or
4//! [`AsExpression`].
5//!
6//! The most common expression to work with is a
7//! [`Column`](crate::query_source::Column). There are various methods
8//! that you can call on these, found in
9//! [`expression_methods`](crate::expression_methods).
10//!
11//! You can also use numeric operators such as `+` on expressions of the
12//! appropriate type.
13//!
14//! Any primitive which implements [`ToSql`](crate::serialize::ToSql) will
15//! also implement [`AsExpression`], allowing it to be
16//! used as an argument to any of the methods described here.
17#[macro_use]
18pub(crate) mod ops;
19pub mod functions;
20
21#[cfg(not(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes"))]
22pub(crate) mod array_comparison;
23#[cfg(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes")]
24pub mod array_comparison;
25pub(crate) mod assume_not_null;
26pub(crate) mod bound;
27mod coerce;
28pub(crate) mod count;
29#[cfg(not(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes"))]
30pub(crate) mod exists;
31#[cfg(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes")]
32pub mod exists;
33pub(crate) mod grouped;
34pub(crate) mod helper_types;
35mod not;
36pub(crate) mod nullable;
37#[macro_use]
38pub(crate) mod operators;
39mod case_when;
40pub(crate) mod select_by;
41mod sql_literal;
42pub(crate) mod subselect;
43
44#[cfg(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes")]
45pub use self::operators::Concat;
46
47// we allow unreachable_pub here
48// as rustc otherwise shows false positives
49// for every item in this module. We reexport
50// everything from `crate::helper_types::`
51#[allow(non_camel_case_types, unreachable_pub)]
52pub(crate) mod dsl {
53    use crate::dsl::SqlTypeOf;
54
55    #[doc(inline)]
56    pub use super::case_when::case_when;
57    #[doc(inline)]
58    pub use super::count::*;
59    #[doc(inline)]
60    pub use super::exists::exists;
61    #[doc(inline)]
62    pub use super::functions::aggregate_folding::*;
63    #[doc(inline)]
64    pub use super::functions::aggregate_ordering::*;
65    #[doc(inline)]
66    pub use super::functions::date_and_time::*;
67    #[doc(inline)]
68    pub use super::helper_types::{case_when, IntoSql, Otherwise, When};
69    #[doc(inline)]
70    pub use super::not::not;
71    #[doc(inline)]
72    pub use super::sql_literal::sql;
73
74    #[cfg(feature = "postgres_backend")]
75    pub use crate::pg::expression::dsl::*;
76
77    /// The return type of [`count(expr)`](crate::dsl::count())
78    pub type count<Expr> = super::count::count<SqlTypeOf<Expr>, Expr>;
79
80    /// The return type of [`count_star()`](crate::dsl::count_star())
81    pub type count_star = super::count::CountStar;
82
83    /// The return type of [`count_distinct()`](crate::dsl::count_distinct())
84    pub type count_distinct<Expr> = super::count::CountDistinct<SqlTypeOf<Expr>, Expr>;
85
86    /// The return type of [`date(expr)`](crate::dsl::date())
87    pub type date<Expr> = super::functions::date_and_time::date<Expr>;
88
89    #[cfg(feature = "mysql_backend")]
90    pub use crate::mysql::query_builder::DuplicatedKeys;
91}
92
93#[doc(inline)]
94pub use self::case_when::CaseWhen;
95#[doc(inline)]
96pub use self::sql_literal::{SqlLiteral, UncheckedBind};
97
98use crate::backend::Backend;
99use crate::dsl::{AsExprOf, AsSelect};
100use crate::sql_types::{HasSqlType, SingleValue, SqlType};
101
102/// Represents a typed fragment of SQL.
103///
104/// Apps should not need to implement this type directly, but it may be common
105/// to use this in where clauses. Libraries should consider using
106/// [`infix_operator!`](crate::infix_operator!) or
107/// [`postfix_operator!`](crate::postfix_operator!) instead of
108/// implementing this directly.
109pub trait Expression {
110    /// The type that this expression represents in SQL
111    type SqlType: TypedExpressionType;
112}
113
114/// Marker trait for possible types of [`Expression::SqlType`]
115///
116pub trait TypedExpressionType {}
117
118/// Possible types for []`Expression::SqlType`]
119///
120pub mod expression_types {
121    use super::{QueryMetadata, TypedExpressionType};
122    use crate::backend::Backend;
123    use crate::sql_types::SingleValue;
124
125    /// Query nodes with this expression type do not have a statically at compile
126    /// time known expression type.
127    ///
128    /// An example for such a query node in diesel itself, is `sql_query` as
129    /// we do not know which fields are returned from such a query at compile time.
130    ///
131    /// For loading values from queries returning a type of this expression, consider
132    /// using [`#[derive(QueryableByName)]`](derive@crate::deserialize::QueryableByName)
133    /// on the corresponding result type.
134    ///
135    #[derive(Clone, Copy, Debug)]
136    pub struct Untyped;
137
138    /// Query nodes witch cannot be part of a select clause.
139    ///
140    /// If you see an error message containing `FromSqlRow` and this type
141    /// recheck that you have written a valid select clause
142    #[derive(Debug, Clone, Copy)]
143    pub struct NotSelectable;
144
145    impl TypedExpressionType for Untyped {}
146    impl TypedExpressionType for NotSelectable {}
147
148    impl<ST> TypedExpressionType for ST where ST: SingleValue {}
149
150    impl<DB: Backend> QueryMetadata<Untyped> for DB {
151        fn row_metadata(_: &mut DB::MetadataLookup, row: &mut Vec<Option<DB::TypeMetadata>>) {
152            row.push(None)
153        }
154    }
155}
156
157impl<T: Expression + ?Sized> Expression for Box<T> {
158    type SqlType = T::SqlType;
159}
160
161impl<T: Expression + ?Sized> Expression for &T {
162    type SqlType = T::SqlType;
163}
164
165/// A helper to translate type level sql type information into
166/// runtime type information for specific queries
167///
168/// If you do not implement a custom backend implementation
169/// this trait is likely not relevant for you.
170pub trait QueryMetadata<T>: Backend {
171    /// The exact return value of this function is considered to be a
172    /// backend specific implementation detail. You should not rely on those
173    /// values if you not own the corresponding backend
174    fn row_metadata(lookup: &mut Self::MetadataLookup, out: &mut Vec<Option<Self::TypeMetadata>>);
175}
176
177impl<T, DB> QueryMetadata<T> for DB
178where
179    DB: Backend + HasSqlType<T>,
180    T: SingleValue,
181{
182    fn row_metadata(lookup: &mut Self::MetadataLookup, out: &mut Vec<Option<Self::TypeMetadata>>) {
183        out.push(Some(<DB as HasSqlType<T>>::metadata(lookup)))
184    }
185}
186
187/// Converts a type to its representation for use in Diesel's query builder.
188///
189/// This trait is used directly. Apps should typically use [`IntoSql`] instead.
190///
191/// Implementations of this trait will generally do one of 3 things:
192///
193/// - Return `self` for types which are already parts of Diesel's query builder
194/// - Perform some implicit coercion (for example, allowing [`now`] to be used as
195///   both [`Timestamp`] and [`Timestamptz`].
196/// - Indicate that the type has data which will be sent separately from the
197///   query. This is generally referred as a "bind parameter". Types which
198///   implement [`ToSql`] will generally implement `AsExpression` this way.
199///
200///   [`IntoSql`]: crate::IntoSql
201///   [`now`]: crate::dsl::now
202///   [`Timestamp`]: crate::sql_types::Timestamp
203///   [`Timestamptz`]: ../pg/types/sql_types/struct.Timestamptz.html
204///   [`ToSql`]: crate::serialize::ToSql
205///
206///  This trait could be [derived](derive@AsExpression)
207pub trait AsExpression<T>
208where
209    T: SqlType + TypedExpressionType,
210{
211    /// The expression being returned
212    type Expression: Expression<SqlType = T>;
213
214    /// Perform the conversion
215    #[allow(clippy::wrong_self_convention)]
216    // That's public API we cannot change it to appease clippy
217    fn as_expression(self) -> Self::Expression;
218}
219
220#[doc(inline)]
221pub use diesel_derives::AsExpression;
222
223impl<T, ST> AsExpression<ST> for T
224where
225    T: Expression<SqlType = ST>,
226    ST: SqlType + TypedExpressionType,
227{
228    type Expression = T;
229
230    fn as_expression(self) -> T {
231        self
232    }
233}
234
235/// Converts a type to its representation for use in Diesel's query builder.
236///
237/// This trait only exists to make usage of `AsExpression` more ergonomic when
238/// the `SqlType` cannot be inferred. It is generally used when you need to use
239/// a Rust value as the left hand side of an expression, or when you want to
240/// select a constant value.
241///
242/// # Example
243///
244/// ```rust
245/// # include!("../doctest_setup.rs");
246/// # use schema::users;
247/// #
248/// # fn main() {
249/// use diesel::sql_types::Text;
250/// #   let conn = &mut establish_connection();
251/// let names = users::table
252///     .select("The Amazing ".into_sql::<Text>().concat(users::name))
253///     .load(conn);
254/// let expected_names = vec![
255///     "The Amazing Sean".to_string(),
256///     "The Amazing Tess".to_string(),
257/// ];
258/// assert_eq!(Ok(expected_names), names);
259/// # }
260/// ```
261pub trait IntoSql {
262    /// Convert `self` to an expression for Diesel's query builder.
263    ///
264    /// There is no difference in behavior between `x.into_sql::<Y>()` and
265    /// `AsExpression::<Y>::as_expression(x)`.
266    fn into_sql<T>(self) -> AsExprOf<Self, T>
267    where
268        Self: AsExpression<T> + Sized,
269        T: SqlType + TypedExpressionType,
270    {
271        self.as_expression()
272    }
273
274    /// Convert `&self` to an expression for Diesel's query builder.
275    ///
276    /// There is no difference in behavior between `x.as_sql::<Y>()` and
277    /// `AsExpression::<Y>::as_expression(&x)`.
278    fn as_sql<'a, T>(&'a self) -> AsExprOf<&'a Self, T>
279    where
280        &'a Self: AsExpression<T>,
281        T: SqlType + TypedExpressionType,
282    {
283        <&'a Self as AsExpression<T>>::as_expression(self)
284    }
285}
286
287impl<T> IntoSql for T {}
288
289/// Indicates that all elements of an expression are valid given a from clause.
290///
291/// This is used to ensure that `users.filter(posts::id.eq(1))` fails to
292/// compile. This constraint is only used in places where the nullability of a
293/// SQL type doesn't matter (everything except `select` and `returning`). For
294/// places where nullability is important, `SelectableExpression` is used
295/// instead.
296pub trait AppearsOnTable<QS: ?Sized>: Expression {}
297
298impl<T: ?Sized, QS> AppearsOnTable<QS> for Box<T>
299where
300    T: AppearsOnTable<QS>,
301    Box<T>: Expression,
302{
303}
304
305impl<'a, T: ?Sized, QS> AppearsOnTable<QS> for &'a T
306where
307    T: AppearsOnTable<QS>,
308    &'a T: Expression,
309{
310}
311
312/// Indicates that an expression can be selected from a source.
313///
314/// Columns will implement this for their table. Certain special types, like
315/// `CountStar` and `Bound` will implement this for all sources. Most compound
316/// expressions will implement this if each of their parts implement it.
317///
318/// Notably, columns will not implement this trait for the right side of a left
319/// join. To select a column or expression using a column from the right side of
320/// a left join, you must call `.nullable()` on it.
321#[diagnostic::on_unimplemented(
322    message = "Cannot select `{Self}` from `{QS}`",
323    note = "`{Self}` is no valid selection for `{QS}`"
324)]
325pub trait SelectableExpression<QS: ?Sized>: AppearsOnTable<QS> {}
326
327impl<T: ?Sized, QS> SelectableExpression<QS> for Box<T>
328where
329    T: SelectableExpression<QS>,
330    Box<T>: AppearsOnTable<QS>,
331{
332}
333
334impl<'a, T: ?Sized, QS> SelectableExpression<QS> for &'a T
335where
336    T: SelectableExpression<QS>,
337    &'a T: AppearsOnTable<QS>,
338{
339}
340
341/// Trait indicating that a record can be selected and queried from the database.
342///
343/// Types which implement `Selectable` represent the select clause of a SQL query.
344/// Use [`SelectableHelper::as_select()`] to construct the select clause. Once you
345/// called `.select(YourType::as_select())` we enforce at the type system level that you
346/// use the same type to load the query result into.
347///
348/// The constructed select clause can contain arbitrary expressions coming from different
349/// tables. The corresponding [derive](derive@Selectable) provides a simple way to
350/// construct a select clause matching fields to the corresponding table columns.
351///
352/// # Examples
353///
354/// If you just want to construct a select clause using an existing struct, you can use
355/// `#[derive(Selectable)]`, See [`#[derive(Selectable)]`](derive@Selectable) for details.
356///
357///
358/// ```rust
359/// # include!("../doctest_setup.rs");
360/// #
361/// use schema::users;
362///
363/// #[derive(Queryable, PartialEq, Debug, Selectable)]
364/// struct User {
365///     id: i32,
366///     name: String,
367/// }
368///
369/// # fn main() {
370/// #     run_test();
371/// # }
372/// #
373/// # fn run_test() -> QueryResult<()> {
374/// #     use schema::users::dsl::*;
375/// #     let connection = &mut establish_connection();
376/// let first_user = users.select(User::as_select()).first(connection)?;
377/// let expected = User { id: 1, name: "Sean".into() };
378/// assert_eq!(expected, first_user);
379/// #     Ok(())
380/// # }
381/// ```
382///
383/// Alternatively, we can implement the trait for our struct manually.
384///
385/// ```rust
386/// # include!("../doctest_setup.rs");
387/// #
388/// use schema::users;
389/// use diesel::prelude::{Queryable, Selectable};
390/// use diesel::backend::Backend;
391///
392/// #[derive(Queryable, PartialEq, Debug)]
393/// struct User {
394///     id: i32,
395///     name: String,
396/// }
397///
398/// impl<DB> Selectable<DB> for User
399/// where
400///     DB: Backend
401/// {
402///     type SelectExpression = (users::id, users::name);
403///
404///     fn construct_selection() -> Self::SelectExpression {
405///         (users::id, users::name)
406///     }
407/// }
408///
409/// # fn main() {
410/// #     run_test();
411/// # }
412/// #
413/// # fn run_test() -> QueryResult<()> {
414/// #     use schema::users::dsl::*;
415/// #     let connection = &mut establish_connection();
416/// let first_user = users.select(User::as_select()).first(connection)?;
417/// let expected = User { id: 1, name: "Sean".into() };
418/// assert_eq!(expected, first_user);
419/// #     Ok(())
420/// # }
421/// ```
422///
423/// When selecting from joined tables, you can select from a
424/// composition of types that implement `Selectable`. The simplest way
425/// is to use a tuple of all the types you wish to select.
426///
427/// ```rust
428/// # include!("../doctest_setup.rs");
429/// use schema::{users, posts};
430///
431/// #[derive(Debug, PartialEq, Queryable, Selectable)]
432/// struct User {
433///     id: i32,
434///     name: String,
435/// }
436///
437/// #[derive(Debug, PartialEq, Queryable, Selectable)]
438/// struct Post {
439///     id: i32,
440///     user_id: i32,
441///     title: String,
442/// }
443///
444/// # fn main() -> QueryResult<()> {
445/// #     let connection = &mut establish_connection();
446/// #
447/// let (first_user, first_post) = users::table
448///     .inner_join(posts::table)
449///     .select(<(User, Post)>::as_select())
450///     .first(connection)?;
451///
452/// let expected_user = User { id: 1, name: "Sean".into() };
453/// assert_eq!(expected_user, first_user);
454///
455/// let expected_post = Post { id: 1, user_id: 1, title: "My first post".into() };
456/// assert_eq!(expected_post, first_post);
457/// #
458/// #     Ok(())
459/// # }
460/// ```
461///
462/// If you want to load only a subset of fields, you can create types
463/// with those fields and use them in the composition.
464///
465/// ```rust
466/// # include!("../doctest_setup.rs");
467/// use schema::{users, posts};
468///
469/// #[derive(Debug, PartialEq, Queryable, Selectable)]
470/// struct User {
471///     id: i32,
472///     name: String,
473/// }
474///
475/// #[derive(Debug, PartialEq, Queryable, Selectable)]
476/// #[diesel(table_name = posts)]
477/// struct PostTitle {
478///     title: String,
479/// }
480///
481/// # fn main() -> QueryResult<()> {
482/// #     let connection = &mut establish_connection();
483/// #
484/// let (first_user, first_post_title) = users::table
485///     .inner_join(posts::table)
486///     .select(<(User, PostTitle)>::as_select())
487///     .first(connection)?;
488///
489/// let expected_user = User { id: 1, name: "Sean".into() };
490/// assert_eq!(expected_user, first_user);
491///
492/// let expected_post_title = PostTitle { title: "My first post".into() };
493/// assert_eq!(expected_post_title, first_post_title);
494/// #
495/// #     Ok(())
496/// # }
497/// ```
498///
499/// You are not limited to using only tuples to build the composed
500/// type. The [`Selectable`](derive@Selectable) derive macro allows
501/// you to *embed* other types. This is useful when you want to
502/// implement methods or traits on the composed type.
503///
504/// ```rust
505/// # include!("../doctest_setup.rs");
506/// use schema::{users, posts};
507///
508/// #[derive(Debug, PartialEq, Queryable, Selectable)]
509/// struct User {
510///     id: i32,
511///     name: String,
512/// }
513///
514/// #[derive(Debug, PartialEq, Queryable, Selectable)]
515/// #[diesel(table_name = posts)]
516/// struct PostTitle {
517///     title: String,
518/// }
519///
520/// #[derive(Debug, PartialEq, Queryable, Selectable)]
521/// struct UserPost {
522///     #[diesel(embed)]
523///     user: User,
524///     #[diesel(embed)]
525///     post_title: PostTitle,
526/// }
527///
528/// # fn main() -> QueryResult<()> {
529/// #     let connection = &mut establish_connection();
530/// #
531/// let first_user_post = users::table
532///     .inner_join(posts::table)
533///     .select(UserPost::as_select())
534///     .first(connection)?;
535///
536/// let expected_user_post = UserPost {
537///     user: User {
538///         id: 1,
539///         name: "Sean".into(),
540///     },
541///     post_title: PostTitle {
542///         title: "My first post".into(),
543///     },
544/// };
545/// assert_eq!(expected_user_post, first_user_post);
546/// #
547/// #     Ok(())
548/// # }
549/// ```
550///
551/// It is also possible to specify an entirely custom select expression
552/// for fields when deriving [`Selectable`](derive@Selectable).
553/// This is useful for example to
554///
555///  * avoid nesting types, or to
556///  * populate fields with values other than table columns, such as
557///    the result of an SQL function like `CURRENT_TIMESTAMP()`
558///    or a custom SQL function.
559///
560/// The select expression is specified via the `select_expression` parameter.
561///
562/// Query fragments created using [`dsl::auto_type`](crate::dsl::auto_type) are supported, which
563/// may be useful as the select expression gets large: it may not be practical to inline it in
564/// the attribute then.
565///
566/// The type of the expression is usually inferred. If it can't be fully inferred automatically,
567/// one may either:
568/// - Put type annotations in inline blocks in the query fragment itself
569/// - Use a dedicated [`dsl::auto_type`](crate::dsl::auto_type) function as `select_expression`
570///   and use [`dsl::auto_type`'s type annotation features](crate::dsl::auto_type)
571/// - Specify the type of the expression using the `select_expression_type` attribute
572///
573/// ```rust
574/// # include!("../doctest_setup.rs");
575/// use schema::{users, posts};
576/// use diesel::dsl;
577///
578/// #[derive(Debug, PartialEq, Queryable, Selectable)]
579/// struct User {
580///     id: i32,
581///     name: String,
582/// }
583///
584/// #[derive(Debug, PartialEq, Queryable, Selectable)]
585/// #[diesel(table_name = posts)]
586/// struct PostTitle {
587///     title: String,
588/// }
589///
590/// #[derive(Debug, PartialEq, Queryable, Selectable)]
591/// struct UserPost {
592///     #[diesel(select_expression = users::columns::id)]
593///     #[diesel(select_expression_type = users::columns::id)]
594///     id: i32,
595///     #[diesel(select_expression = users::columns::name)]
596///     name: String,
597///     #[diesel(select_expression = complex_fragment_for_title())]
598///     title: String,
599/// #   #[cfg(feature = "chrono")]
600///     #[diesel(select_expression = diesel::dsl::now)]
601///     access_time: chrono::NaiveDateTime,
602///     #[diesel(select_expression = users::columns::id.eq({let id: i32 = FOO; id}))]
603///     user_id_is_foo: bool,
604/// }
605/// const FOO: i32 = 42; // Type of FOO can't be inferred automatically in the select_expression
606/// #[dsl::auto_type]
607/// fn complex_fragment_for_title() -> _ {
608///     // See the `#[dsl::auto_type]` documentation for examples of more complex usage
609///     posts::columns::title
610/// }
611///
612/// # fn main() -> QueryResult<()> {
613/// #     let connection = &mut establish_connection();
614/// #
615/// let first_user_post = users::table
616///     .inner_join(posts::table)
617///     .select(UserPost::as_select())
618///     .first(connection)?;
619///
620/// let expected_user_post = UserPost {
621///     id: 1,
622///     name: "Sean".into(),
623///     title: "My first post".into(),
624/// #   #[cfg(feature = "chrono")]
625///     access_time: first_user_post.access_time,
626///     user_id_is_foo: false,
627/// };
628/// assert_eq!(expected_user_post, first_user_post);
629/// #
630/// #     Ok(())
631/// # }
632/// ```
633///
634pub trait Selectable<DB: Backend> {
635    /// The expression you'd like to select.
636    ///
637    /// This is typically a tuple of corresponding to the table columns of your struct's fields.
638    type SelectExpression: Expression;
639
640    /// Construct an instance of the expression
641    fn construct_selection() -> Self::SelectExpression;
642}
643
644#[doc(inline)]
645pub use diesel_derives::Selectable;
646
647/// This helper trait provides several methods for
648/// constructing a select or returning clause based on a
649/// [`Selectable`] implementation.
650pub trait SelectableHelper<DB: Backend>: Selectable<DB> + Sized {
651    /// Construct a select clause based on a [`Selectable`] implementation.
652    ///
653    /// The returned select clause enforces that you use the same type
654    /// for constructing the select clause and for loading the query result into.
655    fn as_select() -> AsSelect<Self, DB>;
656
657    /// An alias for `as_select` that can be used with returning clauses
658    fn as_returning() -> AsSelect<Self, DB> {
659        Self::as_select()
660    }
661}
662
663impl<T, DB> SelectableHelper<DB> for T
664where
665    T: Selectable<DB>,
666    DB: Backend,
667{
668    fn as_select() -> AsSelect<Self, DB> {
669        select_by::SelectBy::new()
670    }
671}
672
673/// Is this expression valid for a given group by clause?
674///
675/// Implementations of this trait must ensure that aggregate expressions are
676/// not mixed with non-aggregate expressions.
677///
678/// For generic types, you can determine if your sub-expressions can appear
679/// together using the [`MixedAggregates`] trait.
680///
681/// `GroupByClause` will be a tuple containing the set of expressions appearing
682/// in the `GROUP BY` portion of the query. If there is no `GROUP BY`, it will
683/// be `()`.
684///
685/// This trait can be [derived]
686///
687/// [derived]: derive@ValidGrouping
688pub trait ValidGrouping<GroupByClause> {
689    /// Is this expression aggregate?
690    ///
691    /// This type should always be one of the structs in the [`is_aggregate`]
692    /// module. See the documentation of those structs for more details.
693    ///
694    type IsAggregate;
695}
696
697impl<T: ValidGrouping<GB> + ?Sized, GB> ValidGrouping<GB> for Box<T> {
698    type IsAggregate = T::IsAggregate;
699}
700
701impl<T: ValidGrouping<GB> + ?Sized, GB> ValidGrouping<GB> for &T {
702    type IsAggregate = T::IsAggregate;
703}
704
705#[doc(inline)]
706pub use diesel_derives::ValidGrouping;
707
708#[doc(hidden)]
709pub trait IsContainedInGroupBy<T> {
710    type Output;
711}
712
713#[doc(hidden)]
714#[allow(missing_debug_implementations, missing_copy_implementations)]
715pub mod is_contained_in_group_by {
716    pub struct Yes;
717    pub struct No;
718
719    pub trait IsAny<O> {
720        type Output;
721    }
722
723    impl<T> IsAny<T> for Yes {
724        type Output = Yes;
725    }
726
727    impl IsAny<Yes> for No {
728        type Output = Yes;
729    }
730
731    impl IsAny<No> for No {
732        type Output = No;
733    }
734}
735
736/// Can two `IsAggregate` types appear in the same expression?
737///
738/// You should never implement this trait. It will eventually become a trait
739/// alias.
740///
741/// [`is_aggregate::Yes`] and [`is_aggregate::No`] can only appear with
742/// themselves or [`is_aggregate::Never`]. [`is_aggregate::Never`] can appear
743/// with anything.
744///
745pub trait MixedAggregates<Other> {
746    /// What is the resulting `IsAggregate` type?
747    type Output;
748}
749
750#[allow(missing_debug_implementations, missing_copy_implementations)]
751/// Possible values for `ValidGrouping::IsAggregate`
752pub mod is_aggregate {
753    use super::MixedAggregates;
754
755    /// Yes, this expression is aggregate for the given group by clause.
756    pub struct Yes;
757
758    /// No, this expression is not aggregate with the given group by clause,
759    /// but it might be aggregate with a different group by clause.
760    pub struct No;
761
762    /// This expression is never aggregate, and can appear with any other
763    /// expression, regardless of whether it is aggregate.
764    ///
765    /// Examples of this are literals. `1` does not care about aggregation.
766    /// `foo + 1` is always valid, regardless of whether `foo` appears in the
767    /// group by clause or not.
768    pub struct Never;
769
770    impl MixedAggregates<Yes> for Yes {
771        type Output = Yes;
772    }
773
774    impl MixedAggregates<Never> for Yes {
775        type Output = Yes;
776    }
777
778    impl MixedAggregates<No> for No {
779        type Output = No;
780    }
781
782    impl MixedAggregates<Never> for No {
783        type Output = No;
784    }
785
786    impl<T> MixedAggregates<T> for Never {
787        type Output = T;
788    }
789}
790
791#[cfg(feature = "unstable")]
792// this needs to be a separate module for the reasons given in
793// https://github.com/rust-lang/rust/issues/65860
794mod unstable;
795
796#[cfg(feature = "unstable")]
797#[doc(inline)]
798pub use self::unstable::NonAggregate;
799
800// Note that these docs are similar to but slightly different than the unstable
801// docs above. Make sure if you change these that you also change the docs
802// above.
803/// Trait alias to represent an expression that isn't aggregate by default.
804///
805/// This trait should never be implemented directly. It is replaced with a
806/// trait alias when the `unstable` feature is enabled.
807///
808/// This alias represents a type which is not aggregate if there is no group by
809/// clause. More specifically, it represents for types which implement
810/// [`ValidGrouping<()>`] where `IsAggregate` is [`is_aggregate::No`] or
811/// [`is_aggregate::Yes`].
812///
813/// While this trait is a useful stand-in for common cases, `T: NonAggregate`
814/// cannot always be used when `T: ValidGrouping<(), IsAggregate = No>` or
815/// `T: ValidGrouping<(), IsAggregate = Never>` could be. For that reason,
816/// unless you need to abstract over both columns and literals, you should
817/// prefer to use [`ValidGrouping<()>`] in your bounds instead.
818///
819/// [`ValidGrouping<()>`]: ValidGrouping
820#[cfg(not(feature = "unstable"))]
821pub trait NonAggregate: ValidGrouping<()> {}
822
823#[cfg(not(feature = "unstable"))]
824impl<T> NonAggregate for T
825where
826    T: ValidGrouping<()>,
827    T::IsAggregate: MixedAggregates<is_aggregate::No, Output = is_aggregate::No>,
828{
829}
830
831use crate::query_builder::{QueryFragment, QueryId};
832
833/// Helper trait used when boxing expressions.
834///
835/// In Rust you cannot create a trait object with more than one trait.
836/// This type has all of the additional traits you would want when using
837/// `Box<Expression>` as a single trait object.
838///
839/// By default `BoxableExpression` is not usable in queries that have a custom
840/// group by clause. Setting the generic parameters `GB` and `IsAggregate` allows
841/// to configure the expression to be used with a specific group by clause.
842///
843/// This is typically used as the return type of a function.
844/// For cases where you want to dynamically construct a query,
845/// [boxing the query] is usually more ergonomic.
846///
847/// [boxing the query]: crate::query_dsl::QueryDsl::into_boxed()
848///
849/// # Examples
850///
851/// ## Usage without group by clause
852///
853/// ```rust
854/// # include!("../doctest_setup.rs");
855/// # use schema::users;
856/// use diesel::sql_types::Bool;
857///
858/// # fn main() {
859/// #     run_test().unwrap();
860/// # }
861/// #
862/// # fn run_test() -> QueryResult<()> {
863/// #     let conn = &mut establish_connection();
864/// enum Search {
865///     Id(i32),
866///     Name(String),
867/// }
868///
869/// # /*
870/// type DB = diesel::sqlite::Sqlite;
871/// # */
872///
873/// fn find_user(search: Search) -> Box<dyn BoxableExpression<users::table, DB, SqlType = Bool>> {
874///     match search {
875///         Search::Id(id) => Box::new(users::id.eq(id)),
876///         Search::Name(name) => Box::new(users::name.eq(name)),
877///     }
878/// }
879///
880/// let user_one = users::table
881///     .filter(find_user(Search::Id(1)))
882///     .first(conn)?;
883/// assert_eq!((1, String::from("Sean")), user_one);
884///
885/// let tess = users::table
886///     .filter(find_user(Search::Name("Tess".into())))
887///     .first(conn)?;
888/// assert_eq!((2, String::from("Tess")), tess);
889/// #     Ok(())
890/// # }
891/// ```
892///
893/// ## Allow usage with group by clause
894///
895/// ```rust
896/// # include!("../doctest_setup.rs");
897///
898/// # use schema::users;
899/// use diesel::sql_types::Text;
900/// use diesel::dsl;
901/// use diesel::expression::ValidGrouping;
902///
903/// # fn main() {
904/// #     run_test().unwrap();
905/// # }
906/// #
907/// # fn run_test() -> QueryResult<()> {
908/// #     let conn = &mut establish_connection();
909/// enum NameOrConst {
910///     Name,
911///     Const(String),
912/// }
913///
914/// # /*
915/// type DB = diesel::sqlite::Sqlite;
916/// # */
917///
918/// fn selection<GB>(
919///     selection: NameOrConst
920/// ) -> Box<
921///     dyn BoxableExpression<
922///         users::table,
923///         DB,
924///         GB,
925///         <users::name as ValidGrouping<GB>>::IsAggregate,
926///         SqlType = Text
927///     >
928/// >
929/// where
930///     users::name: BoxableExpression<
931///             users::table,
932///             DB,
933///             GB,
934///             <users::name as ValidGrouping<GB>>::IsAggregate,
935///             SqlType = Text
936///         > + ValidGrouping<GB>,
937/// {
938///     match selection {
939///         NameOrConst::Name => Box::new(users::name),
940///         NameOrConst::Const(name) => Box::new(name.into_sql::<Text>()),
941///     }
942/// }
943///
944/// let user_one = users::table
945///     .select(selection(NameOrConst::Name))
946///     .first::<String>(conn)?;
947/// assert_eq!(String::from("Sean"), user_one);
948///
949/// let with_name = users::table
950///     .group_by(users::name)
951///     .select(selection(NameOrConst::Const("Jane Doe".into())))
952///     .first::<String>(conn)?;
953/// assert_eq!(String::from("Jane Doe"), with_name);
954/// #     Ok(())
955/// # }
956/// ```
957///
958/// ## More advanced query source
959///
960/// This example is a bit contrived, but in general, if you want to for example filter based on
961/// different criteria on a joined table, you can use `InnerJoinQuerySource` and
962/// `LeftJoinQuerySource` in the QS parameter of `BoxableExpression`.
963///
964/// ```rust
965/// # include!("../doctest_setup.rs");
966/// # use schema::{users, posts};
967/// use diesel::sql_types::Bool;
968/// use diesel::dsl::InnerJoinQuerySource;
969///
970/// # fn main() {
971/// #     run_test().unwrap();
972/// # }
973/// #
974/// # fn run_test() -> QueryResult<()> {
975/// #     let conn = &mut establish_connection();
976/// enum UserPostFilter {
977///     User(i32),
978///     Post(i32),
979/// }
980///
981/// # /*
982/// type DB = diesel::sqlite::Sqlite;
983/// # */
984///
985/// fn filter_user_posts(
986///     filter: UserPostFilter,
987/// ) -> Box<dyn BoxableExpression<InnerJoinQuerySource<users::table, posts::table>, DB, SqlType = Bool>>
988/// {
989///     match filter {
990///         UserPostFilter::User(user_id) => Box::new(users::id.eq(user_id)),
991///         UserPostFilter::Post(post_id) => Box::new(posts::id.eq(post_id)),
992///     }
993/// }
994///
995/// let post_by_user_one = users::table
996///     .inner_join(posts::table)
997///     .filter(filter_user_posts(UserPostFilter::User(2)))
998///     .select((posts::title, users::name))
999///     .first::<(String, String)>(conn)?;
1000///
1001/// assert_eq!(
1002///     ("My first post too".to_string(), "Tess".to_string()),
1003///     post_by_user_one
1004/// );
1005/// #     Ok(())
1006/// # }
1007/// ```
1008pub trait BoxableExpression<QS, DB, GB = (), IsAggregate = is_aggregate::No>
1009where
1010    DB: Backend,
1011    Self: Expression,
1012    Self: SelectableExpression<QS>,
1013    Self: QueryFragment<DB>,
1014    Self: Send,
1015{
1016}
1017
1018impl<QS, T, DB, GB, IsAggregate> BoxableExpression<QS, DB, GB, IsAggregate> for T
1019where
1020    DB: Backend,
1021    T: Expression,
1022    T: SelectableExpression<QS>,
1023    T: ValidGrouping<GB>,
1024    T: QueryFragment<DB>,
1025    T: Send,
1026    T::IsAggregate: MixedAggregates<IsAggregate, Output = IsAggregate>,
1027{
1028}
1029
1030impl<QS, ST, DB, GB, IsAggregate> QueryId
1031    for dyn BoxableExpression<QS, DB, GB, IsAggregate, SqlType = ST> + '_
1032{
1033    type QueryId = ();
1034
1035    const HAS_STATIC_QUERY_ID: bool = false;
1036}
1037
1038impl<QS, ST, DB, GB, IsAggregate> ValidGrouping<GB>
1039    for dyn BoxableExpression<QS, DB, GB, IsAggregate, SqlType = ST> + '_
1040{
1041    type IsAggregate = IsAggregate;
1042}
1043
1044/// Converts a tuple of values into a tuple of Diesel expressions.
1045///
1046/// This trait is similar to [`AsExpression`], but it operates on tuples.
1047/// The expressions must all be of the same SQL type.
1048///
1049pub trait AsExpressionList<ST> {
1050    /// The final output expression
1051    type Expression;
1052
1053    /// Perform the conversion
1054    // That's public API, we cannot change
1055    // that to appease clippy
1056    #[allow(clippy::wrong_self_convention)]
1057    fn as_expression_list(self) -> Self::Expression;
1058}