zerovec/varzerovec/
owned.rs

1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5// The mutation operations in this file should panic to prevent undefined behavior
6#![allow(clippy::unwrap_used)]
7#![allow(clippy::expect_used)]
8#![allow(clippy::indexing_slicing)]
9#![allow(clippy::panic)]
10
11use super::*;
12use crate::ule::*;
13use alloc::boxed::Box;
14use alloc::vec::Vec;
15use core::any;
16use core::convert::TryInto;
17use core::marker::PhantomData;
18use core::ops::Deref;
19use core::ops::Range;
20use core::{fmt, ptr, slice};
21
22use super::components::LENGTH_WIDTH;
23use super::components::MAX_INDEX;
24use super::components::MAX_LENGTH;
25use super::components::METADATA_WIDTH;
26
27/// A fully-owned [`VarZeroVec`]. This type has no lifetime but has the same
28/// internal buffer representation of [`VarZeroVec`], making it cheaply convertible to
29/// [`VarZeroVec`] and [`VarZeroSlice`].
30///
31/// The `F` type parameter is a [`VarZeroVecFormat`] (see its docs for more details), which can be used to select the
32/// precise format of the backing buffer with various size and performance tradeoffs. It defaults to [`Index16`].
33pub struct VarZeroVecOwned<T: ?Sized, F = Index16> {
34    marker: PhantomData<(Box<T>, F)>,
35    // safety invariant: must parse into a valid VarZeroVecComponents
36    entire_slice: Vec<u8>,
37}
38
39impl<T: ?Sized, F> Clone for VarZeroVecOwned<T, F> {
40    fn clone(&self) -> Self {
41        VarZeroVecOwned {
42            marker: self.marker,
43            entire_slice: self.entire_slice.clone(),
44        }
45    }
46}
47
48// The effect of a shift on the indices in the varzerovec.
49#[derive(PartialEq)]
50enum ShiftType {
51    Insert,
52    Replace,
53    Remove,
54}
55
56impl<T: VarULE + ?Sized, F: VarZeroVecFormat> Deref for VarZeroVecOwned<T, F> {
57    type Target = VarZeroSlice<T, F>;
58    fn deref(&self) -> &VarZeroSlice<T, F> {
59        self.as_slice()
60    }
61}
62
63impl<T: VarULE + ?Sized, F> VarZeroVecOwned<T, F> {
64    /// Construct an empty VarZeroVecOwned
65    pub fn new() -> Self {
66        Self {
67            marker: PhantomData,
68            entire_slice: Vec::new(),
69        }
70    }
71}
72
73impl<T: VarULE + ?Sized, F: VarZeroVecFormat> VarZeroVecOwned<T, F> {
74    /// Construct a VarZeroVecOwned from a [`VarZeroSlice`] by cloning the internal data
75    pub fn from_slice(slice: &VarZeroSlice<T, F>) -> Self {
76        Self {
77            marker: PhantomData,
78            entire_slice: slice.as_bytes().into(),
79        }
80    }
81
82    /// Construct a VarZeroVecOwned from a list of elements
83    pub fn try_from_elements<A>(elements: &[A]) -> Result<Self, &'static str>
84    where
85        A: EncodeAsVarULE<T>,
86    {
87        Ok(if elements.is_empty() {
88            Self::from_slice(VarZeroSlice::new_empty())
89        } else {
90            Self {
91                marker: PhantomData,
92                // TODO(#1410): Rethink length errors in VZV.
93                entire_slice: components::get_serializable_bytes_non_empty::<T, A, F>(elements)
94                    .ok_or(
95                        "Attempted to build VarZeroVec out of elements that \
96                                     cumulatively are larger than a u32 in size",
97                    )?,
98            }
99        })
100    }
101
102    /// Obtain this `VarZeroVec` as a [`VarZeroSlice`]
103    pub fn as_slice(&self) -> &VarZeroSlice<T, F> {
104        let slice: &[u8] = &self.entire_slice;
105        unsafe {
106            // safety: the slice is known to come from a valid parsed VZV
107            VarZeroSlice::from_byte_slice_unchecked(slice)
108        }
109    }
110
111    /// Try to allocate a buffer with enough capacity for `capacity`
112    /// elements. Since `T` can take up an arbitrary size this will
113    /// just allocate enough space for 4-byte Ts
114    pub(crate) fn with_capacity(capacity: usize) -> Self {
115        Self {
116            marker: PhantomData,
117            entire_slice: Vec::with_capacity(capacity * (F::INDEX_WIDTH + 4)),
118        }
119    }
120
121    /// Try to reserve space for `capacity`
122    /// elements. Since `T` can take up an arbitrary size this will
123    /// just allocate enough space for 4-byte Ts
124    pub(crate) fn reserve(&mut self, capacity: usize) {
125        self.entire_slice.reserve(capacity * (F::INDEX_WIDTH + 4))
126    }
127
128    /// Get the position of a specific element in the data segment.
129    ///
130    /// If `idx == self.len()`, it will return the size of the data segment (where a new element would go).
131    ///
132    /// ## Safety
133    /// `idx <= self.len()` and `self.as_encoded_bytes()` is well-formed.
134    unsafe fn element_position_unchecked(&self, idx: usize) -> usize {
135        let len = self.len();
136        let out = if idx == len {
137            self.entire_slice.len() - LENGTH_WIDTH - METADATA_WIDTH - (F::INDEX_WIDTH * len)
138        } else {
139            F::rawbytes_to_usize(*self.index_data(idx))
140        };
141        debug_assert!(
142            out + LENGTH_WIDTH + METADATA_WIDTH + len * F::INDEX_WIDTH <= self.entire_slice.len()
143        );
144        out
145    }
146
147    /// Get the range of a specific element in the data segment.
148    ///
149    /// ## Safety
150    /// `idx < self.len()` and `self.as_encoded_bytes()` is well-formed.
151    unsafe fn element_range_unchecked(&self, idx: usize) -> core::ops::Range<usize> {
152        let start = self.element_position_unchecked(idx);
153        let end = self.element_position_unchecked(idx + 1);
154        debug_assert!(start <= end, "{start} > {end}");
155        start..end
156    }
157
158    /// Set the number of elements in the list without any checks.
159    ///
160    /// ## Safety
161    /// No safe functions may be called until `self.as_encoded_bytes()` is well-formed.
162    unsafe fn set_len(&mut self, len: usize) {
163        assert!(len <= MAX_LENGTH);
164        let len_bytes = len.to_le_bytes();
165        self.entire_slice[0..LENGTH_WIDTH].copy_from_slice(&len_bytes[0..LENGTH_WIDTH]);
166        // Double-check that the length fits in the length field
167        assert_eq!(len_bytes[LENGTH_WIDTH..].iter().sum::<u8>(), 0);
168    }
169
170    fn index_range(index: usize) -> Range<usize> {
171        let pos = LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * index;
172        pos..pos + F::INDEX_WIDTH
173    }
174
175    /// Return the raw bytes representing the given `index`.
176    ///
177    /// ## Safety
178    /// The index must be valid, and self.as_encoded_bytes() must be well-formed
179    unsafe fn index_data(&self, index: usize) -> &F::RawBytes {
180        &F::RawBytes::from_byte_slice_unchecked(&self.entire_slice[Self::index_range(index)])[0]
181    }
182
183    /// Return the mutable slice representing the given `index`.
184    ///
185    /// ## Safety
186    /// The index must be valid. self.as_encoded_bytes() must have allocated space
187    /// for this index, but need not have its length appropriately set.
188    unsafe fn index_data_mut(&mut self, index: usize) -> &mut F::RawBytes {
189        let ptr = self.entire_slice.as_mut_ptr();
190        let range = Self::index_range(index);
191
192        // Doing this instead of just `get_unchecked_mut()` because it's unclear
193        // if `get_unchecked_mut()` can be called out of bounds on a slice even
194        // if we know the buffer is larger.
195        let data = slice::from_raw_parts_mut(ptr.add(range.start), F::INDEX_WIDTH);
196
197        &mut F::rawbytes_from_byte_slice_unchecked_mut(data)[0]
198    }
199
200    /// Shift the indices starting with and after `starting_index` by the provided `amount`.
201    ///
202    /// ## Safety
203    /// Adding `amount` to each index after `starting_index` must not result in the slice from becoming malformed.
204    /// The length of the slice must be correctly set.
205    unsafe fn shift_indices(&mut self, starting_index: usize, amount: i32) {
206        let len = self.len();
207        let indices = F::rawbytes_from_byte_slice_unchecked_mut(
208            &mut self.entire_slice[LENGTH_WIDTH + METADATA_WIDTH
209                ..LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * len],
210        );
211        for idx in &mut indices[starting_index..] {
212            let mut new_idx = F::rawbytes_to_usize(*idx);
213            if amount > 0 {
214                new_idx = new_idx.checked_add(amount.try_into().unwrap()).unwrap();
215            } else {
216                new_idx = new_idx.checked_sub((-amount).try_into().unwrap()).unwrap();
217            }
218            *idx = F::usize_to_rawbytes(new_idx);
219        }
220    }
221
222    /// Get this [`VarZeroVecOwned`] as a borrowed [`VarZeroVec`]
223    ///
224    /// If you wish to repeatedly call methods on this [`VarZeroVecOwned`],
225    /// it is more efficient to perform this conversion first
226    pub fn as_varzerovec<'a>(&'a self) -> VarZeroVec<'a, T, F> {
227        self.as_slice().into()
228    }
229
230    /// Empty the vector
231    pub fn clear(&mut self) {
232        self.entire_slice.clear()
233    }
234
235    /// Consume this vector and return the backing buffer
236    #[inline]
237    pub fn into_bytes(self) -> Vec<u8> {
238        self.entire_slice
239    }
240
241    /// Invalidate and resize the data at an index, optionally inserting or removing the index.
242    /// Also updates affected indices and the length.
243    /// Returns a slice to the new element data - it doesn't contain uninitialized data but its value is indeterminate.
244    ///
245    /// ## Safety
246    /// - `index` must be a valid index, or, if `shift_type == ShiftType::Insert`, `index == self.len()` is allowed.
247    /// - `new_size` musn't result in the data segment growing larger than `F::MAX_VALUE`.
248    unsafe fn shift(&mut self, index: usize, new_size: usize, shift_type: ShiftType) -> &mut [u8] {
249        // The format of the encoded data is:
250        //  - four bytes of "len"
251        //  - len*4 bytes for an array of indices
252        //  - the actual data to which the indices point
253        //
254        // When inserting or removing an element, the size of the indices segment must be changed,
255        // so the data before the target element must be shifted by 4 bytes in addition to the
256        // shifting needed for the new element size.
257        let len = self.len();
258        let slice_len = self.entire_slice.len();
259
260        let prev_element = match shift_type {
261            ShiftType::Insert => {
262                let pos = self.element_position_unchecked(index);
263                // In the case of an insert, there's no previous element,
264                // so it's an empty range at the new position.
265                pos..pos
266            }
267            _ => self.element_range_unchecked(index),
268        };
269
270        // How much shifting must be done in bytes due to removal/insertion of an index.
271        let index_shift: i64 = match shift_type {
272            ShiftType::Insert => F::INDEX_WIDTH as i64,
273            ShiftType::Replace => 0,
274            ShiftType::Remove => -(F::INDEX_WIDTH as i64),
275        };
276        // The total shift in byte size of the owned slice.
277        let shift: i64 =
278            new_size as i64 - (prev_element.end - prev_element.start) as i64 + index_shift;
279        let new_slice_len = slice_len.wrapping_add(shift as usize);
280        if shift > 0 {
281            if new_slice_len > F::MAX_VALUE as usize {
282                panic!(
283                    "Attempted to grow VarZeroVec to an encoded size that does not fit within the length size used by {}",
284                    any::type_name::<F>()
285                );
286            }
287            self.entire_slice.resize(new_slice_len, 0);
288        }
289
290        // Now that we've ensured there's enough space, we can shift the data around.
291        {
292            // Note: There are no references introduced between pointer creation and pointer use, and all
293            //       raw pointers are derived from a single &mut. This preserves pointer provenance.
294            let slice_range = self.entire_slice.as_mut_ptr_range();
295            let old_slice_end = slice_range.start.add(slice_len);
296            let data_start = slice_range
297                .start
298                .add(LENGTH_WIDTH + METADATA_WIDTH + len * F::INDEX_WIDTH);
299            let prev_element_p =
300                data_start.add(prev_element.start)..data_start.add(prev_element.end);
301
302            // The memory range of the affected index.
303            // When inserting: where the new index goes.
304            // When removing:  where the index being removed is.
305            // When replacing: unused.
306            let index_range = {
307                let index_start = slice_range
308                    .start
309                    .add(LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * index);
310                index_start..index_start.add(F::INDEX_WIDTH)
311            };
312
313            unsafe fn shift_bytes(block: Range<*const u8>, to: *mut u8) {
314                debug_assert!(block.end >= block.start);
315                ptr::copy(block.start, to, block.end.offset_from(block.start) as usize);
316            }
317
318            if shift_type == ShiftType::Remove {
319                // Move the data before the element back by 4 to remove the index.
320                shift_bytes(index_range.end..prev_element_p.start, index_range.start);
321            }
322
323            // Shift data after the element to its new position.
324            shift_bytes(
325                prev_element_p.end..old_slice_end,
326                prev_element_p
327                    .start
328                    .offset((new_size as i64 + index_shift) as isize),
329            );
330
331            let first_affected_index = match shift_type {
332                ShiftType::Insert => {
333                    // Move data before the element forward by 4 to make space for a new index.
334                    shift_bytes(index_range.start..prev_element_p.start, index_range.end);
335
336                    *self.index_data_mut(index) = F::usize_to_rawbytes(prev_element.start);
337                    self.set_len(len + 1);
338                    index + 1
339                }
340                ShiftType::Remove => {
341                    self.set_len(len - 1);
342                    index
343                }
344                ShiftType::Replace => index + 1,
345            };
346            // No raw pointer use should occur after this point (because of self.index_data and self.set_len).
347
348            // Set the new slice length. This must be done after shifting data around to avoid uninitialized data.
349            self.entire_slice.set_len(new_slice_len);
350
351            // Shift the affected indices.
352            self.shift_indices(first_affected_index, (shift - index_shift) as i32);
353        };
354
355        debug_assert!(self.verify_integrity());
356
357        // Return a mut slice to the new element data.
358        let element_pos = LENGTH_WIDTH
359            + METADATA_WIDTH
360            + self.len() * F::INDEX_WIDTH
361            + self.element_position_unchecked(index);
362        &mut self.entire_slice[element_pos..element_pos + new_size]
363    }
364
365    /// Checks the internal invariants of the vec to ensure safe code will not cause UB.
366    /// Returns whether integrity was verified.
367    ///
368    /// Note: an index is valid if it doesn't point to data past the end of the slice and is
369    /// less than or equal to all future indices. The length of the index segment is not part of each index.
370    fn verify_integrity(&self) -> bool {
371        if self.is_empty() && !self.entire_slice.is_empty() {
372            return false;
373        }
374        let slice_len = self.entire_slice.len();
375        match slice_len {
376            0 => return true,
377            1..=3 => return false,
378            _ => (),
379        }
380        let len = unsafe {
381            RawBytesULE::<LENGTH_WIDTH>::from_byte_slice_unchecked(
382                &self.entire_slice[..LENGTH_WIDTH],
383            )[0]
384            .as_unsigned_int()
385        };
386        if len == 0 {
387            // An empty vec must have an empty slice: there is only a single valid byte representation.
388            return false;
389        }
390        if slice_len < LENGTH_WIDTH + METADATA_WIDTH + len as usize * F::INDEX_WIDTH {
391            // Not enough room for the indices.
392            return false;
393        }
394        let data_len =
395            self.entire_slice.len() - LENGTH_WIDTH - METADATA_WIDTH - len as usize * F::INDEX_WIDTH;
396        if data_len > MAX_INDEX {
397            // The data segment is too long.
398            return false;
399        }
400
401        // Test index validity.
402        let indices = unsafe {
403            F::RawBytes::from_byte_slice_unchecked(
404                &self.entire_slice[LENGTH_WIDTH + METADATA_WIDTH
405                    ..LENGTH_WIDTH + METADATA_WIDTH + len as usize * F::INDEX_WIDTH],
406            )
407        };
408        for idx in indices {
409            if F::rawbytes_to_usize(*idx) > data_len {
410                // Indices must not point past the data segment.
411                return false;
412            }
413        }
414        for window in indices.windows(2) {
415            if F::rawbytes_to_usize(window[0]) > F::rawbytes_to_usize(window[1]) {
416                // Indices must be in non-decreasing order.
417                return false;
418            }
419        }
420        true
421    }
422
423    /// Insert an element at the end of this vector
424    pub fn push<A: EncodeAsVarULE<T> + ?Sized>(&mut self, element: &A) {
425        self.insert(self.len(), element)
426    }
427
428    /// Insert an element at index `idx`
429    pub fn insert<A: EncodeAsVarULE<T> + ?Sized>(&mut self, index: usize, element: &A) {
430        let len = self.len();
431        if index > len {
432            panic!("Called out-of-bounds insert() on VarZeroVec, index {index} len {len}");
433        }
434
435        let value_len = element.encode_var_ule_len();
436
437        if len == 0 {
438            let header_len = LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH;
439            let cap = header_len + value_len;
440            self.entire_slice.resize(cap, 0);
441            self.entire_slice[0] = 1; // set length
442            element.encode_var_ule_write(&mut self.entire_slice[header_len..]);
443            return;
444        }
445
446        assert!(value_len < MAX_INDEX);
447        unsafe {
448            let place = self.shift(index, value_len, ShiftType::Insert);
449            element.encode_var_ule_write(place);
450        }
451    }
452
453    /// Remove the element at index `idx`
454    pub fn remove(&mut self, index: usize) {
455        let len = self.len();
456        if index >= len {
457            panic!("Called out-of-bounds remove() on VarZeroVec, index {index} len {len}");
458        }
459        if len == 1 {
460            // This is removing the last element. Set the slice to empty to ensure all empty vecs have empty data slices.
461            self.entire_slice.clear();
462            return;
463        }
464        unsafe {
465            self.shift(index, 0, ShiftType::Remove);
466        }
467    }
468
469    /// Replace the element at index `idx` with another
470    pub fn replace<A: EncodeAsVarULE<T> + ?Sized>(&mut self, index: usize, element: &A) {
471        let len = self.len();
472        if index >= len {
473            panic!("Called out-of-bounds replace() on VarZeroVec, index {index} len {len}");
474        }
475
476        let value_len = element.encode_var_ule_len();
477
478        assert!(value_len < MAX_INDEX);
479        unsafe {
480            let place = self.shift(index, value_len, ShiftType::Replace);
481            element.encode_var_ule_write(place);
482        }
483    }
484}
485
486impl<T: VarULE + ?Sized, F: VarZeroVecFormat> fmt::Debug for VarZeroVecOwned<T, F>
487where
488    T: fmt::Debug,
489{
490    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
491        VarZeroSlice::fmt(self, f)
492    }
493}
494
495impl<T: VarULE + ?Sized, F> Default for VarZeroVecOwned<T, F> {
496    fn default() -> Self {
497        Self::new()
498    }
499}
500
501impl<T, A, F> PartialEq<&'_ [A]> for VarZeroVecOwned<T, F>
502where
503    T: VarULE + ?Sized,
504    T: PartialEq,
505    A: AsRef<T>,
506    F: VarZeroVecFormat,
507{
508    #[inline]
509    fn eq(&self, other: &&[A]) -> bool {
510        self.iter().eq(other.iter().map(|t| t.as_ref()))
511    }
512}
513
514impl<'a, T: ?Sized + VarULE, F: VarZeroVecFormat> From<&'a VarZeroSlice<T, F>>
515    for VarZeroVecOwned<T, F>
516{
517    fn from(other: &'a VarZeroSlice<T, F>) -> Self {
518        Self::from_slice(other)
519    }
520}
521
522#[cfg(test)]
523mod test {
524    use super::VarZeroVecOwned;
525    #[test]
526    fn test_insert_integrity() {
527        let mut items: Vec<String> = Vec::new();
528        let mut zerovec = VarZeroVecOwned::<str>::new();
529
530        // Insert into an empty vec.
531        items.insert(0, "1234567890".into());
532        zerovec.insert(0, "1234567890");
533        assert_eq!(zerovec, &*items);
534
535        zerovec.insert(1, "foo3");
536        items.insert(1, "foo3".into());
537        assert_eq!(zerovec, &*items);
538
539        // Insert at the end.
540        items.insert(items.len(), "qwertyuiop".into());
541        zerovec.insert(zerovec.len(), "qwertyuiop");
542        assert_eq!(zerovec, &*items);
543
544        items.insert(0, "asdfghjkl;".into());
545        zerovec.insert(0, "asdfghjkl;");
546        assert_eq!(zerovec, &*items);
547
548        items.insert(2, "".into());
549        zerovec.insert(2, "");
550        assert_eq!(zerovec, &*items);
551    }
552
553    #[test]
554    // ensure that inserting empty items works
555    fn test_empty_inserts() {
556        let mut items: Vec<String> = Vec::new();
557        let mut zerovec = VarZeroVecOwned::<str>::new();
558
559        // Insert into an empty vec.
560        items.insert(0, "".into());
561        zerovec.insert(0, "");
562        assert_eq!(zerovec, &*items);
563
564        items.insert(0, "".into());
565        zerovec.insert(0, "");
566        assert_eq!(zerovec, &*items);
567
568        items.insert(0, "1234567890".into());
569        zerovec.insert(0, "1234567890");
570        assert_eq!(zerovec, &*items);
571
572        items.insert(0, "".into());
573        zerovec.insert(0, "");
574        assert_eq!(zerovec, &*items);
575    }
576
577    #[test]
578    fn test_small_insert_integrity() {
579        // Tests that insert() works even when there
580        // is not enough space for the new index in entire_slice.len()
581        let mut items: Vec<String> = Vec::new();
582        let mut zerovec = VarZeroVecOwned::<str>::new();
583
584        // Insert into an empty vec.
585        items.insert(0, "abc".into());
586        zerovec.insert(0, "abc");
587        assert_eq!(zerovec, &*items);
588
589        zerovec.insert(1, "def");
590        items.insert(1, "def".into());
591        assert_eq!(zerovec, &*items);
592    }
593
594    #[test]
595    #[should_panic]
596    fn test_insert_past_end() {
597        VarZeroVecOwned::<str>::new().insert(1, "");
598    }
599
600    #[test]
601    fn test_remove_integrity() {
602        let mut items: Vec<&str> = vec!["apples", "bananas", "eeples", "", "baneenees", "five", ""];
603        let mut zerovec = VarZeroVecOwned::<str>::try_from_elements(&items).unwrap();
604
605        for index in [0, 2, 4, 0, 1, 1, 0] {
606            items.remove(index);
607            zerovec.remove(index);
608            assert_eq!(zerovec, &*items, "index {}, len {}", index, items.len());
609        }
610    }
611
612    #[test]
613    fn test_removing_last_element_clears() {
614        let mut zerovec = VarZeroVecOwned::<str>::try_from_elements(&["buy some apples"]).unwrap();
615        assert!(!zerovec.as_bytes().is_empty());
616        zerovec.remove(0);
617        assert!(zerovec.as_bytes().is_empty());
618    }
619
620    #[test]
621    #[should_panic]
622    fn test_remove_past_end() {
623        VarZeroVecOwned::<str>::new().remove(0);
624    }
625
626    #[test]
627    fn test_replace_integrity() {
628        let mut items: Vec<&str> = vec!["apples", "bananas", "eeples", "", "baneenees", "five", ""];
629        let mut zerovec = VarZeroVecOwned::<str>::try_from_elements(&items).unwrap();
630
631        // Replace with an element of the same size (and the first element)
632        items[0] = "blablah";
633        zerovec.replace(0, "blablah");
634        assert_eq!(zerovec, &*items);
635
636        // Replace with a smaller element
637        items[1] = "twily";
638        zerovec.replace(1, "twily");
639        assert_eq!(zerovec, &*items);
640
641        // Replace an empty element
642        items[3] = "aoeuidhtns";
643        zerovec.replace(3, "aoeuidhtns");
644        assert_eq!(zerovec, &*items);
645
646        // Replace the last element
647        items[6] = "0123456789";
648        zerovec.replace(6, "0123456789");
649        assert_eq!(zerovec, &*items);
650
651        // Replace with an empty element
652        items[2] = "";
653        zerovec.replace(2, "");
654        assert_eq!(zerovec, &*items);
655    }
656
657    #[test]
658    #[should_panic]
659    fn test_replace_past_end() {
660        VarZeroVecOwned::<str>::new().replace(0, "");
661    }
662}