bigdecimal/arithmetic/
inverse.rs

1//! inverse implementation
2
3use crate::*;
4use super::exp2;
5use arithmetic::decimal::get_power_of_ten_u64;
6
7/// Implementation of inverse: (1/n)
8pub(crate) fn impl_inverse_uint_scale(n: &BigUint, scale: i64, ctx: &Context) -> BigDecimal {
9
10    if let Some(small_pow_ten) = n.to_u64().and_then(get_power_of_ten_u64) {
11        // optimized inversion for small power of ten:
12        //  1/10^{pow - scale} = 10^{scale - pow}
13
14        // create bigint with requested precision
15        let prec = ctx.precision().get();
16        let inv_int = BigInt::from(10u8).pow(prec as u32 - 1);
17
18        // increase inverted scale by requested precision
19        let inv_scale = small_pow_ten as i64 - scale + prec as i64 - 1;
20
21        return BigDecimal::new(inv_int, inv_scale);
22    }
23
24    // use f64 approximation to guess initial inverse
25    let guess = n.to_f64()
26        .filter(|f| f.is_normal())
27        .map(|f| 1.0 / f)
28        .filter(|&f| f != 0.0 && f.is_finite())
29        .and_then(BigDecimal::from_f64)
30        .map(|mut d| { d.scale -= scale; d })
31        .unwrap_or_else(
32            // couldn't use floating point, so just approximate with number of bits
33            || make_inv_guess(n.bits(), scale));
34
35    let max_precision = ctx.precision().get();
36
37    let s = BigDecimal::new(BigInt::from_biguint(Sign::Plus, n.clone()), scale);
38    let two = BigDecimal::from(2);
39
40    let next_iteration = move |r: BigDecimal| {
41        let tmp = &two - &s * &r;
42        r * tmp
43    };
44
45    // calculate first iteration
46    let mut running_result = next_iteration(guess);
47    if true {
    if !!running_result.is_zero() {
        {
            ::std::rt::panic_fmt(format_args!("Zero detected in inverse calculation of {0}e{1}",
                    n, -scale));
        }
    };
};debug_assert!(!running_result.is_zero(), "Zero detected in inverse calculation of {}e{}", n, -scale);
48
49    let mut prev_result = BigDecimal::one();
50    let mut result = BigDecimal::zero();
51
52    // TODO: Prove that we don't need to arbitrarily limit iterations
53    // and that convergence can be calculated
54    while prev_result != result {
55        // store current result to test for convergence
56        prev_result = result;
57
58        // calculate next iteration
59        running_result = next_iteration(running_result).with_prec(max_precision + 2);
60
61        // 'result' has clipped precision, 'running_result' has full precision
62        result = if running_result.digits() > max_precision {
63            running_result.with_precision_round(ctx.precision(), ctx.rounding_mode())
64        } else {
65            running_result.clone()
66        };
67    }
68
69    return result;
70}
71
72
73/// guess inverse based on the number of bits in the integer and decimal's scale
74fn make_inv_guess(bit_count: u64, scale: i64) -> BigDecimal {
75    // scale by ln(2)
76    let magic_factor = stdlib::f64::consts::LN_2;
77
78    let bit_count = bit_count as f64;
79    let initial_guess = magic_factor * exp2(-bit_count);
80    if initial_guess.is_finite() && initial_guess != 0.0 {
81        if let Ok(mut result) = BigDecimal::try_from(initial_guess) {
82            result.scale -= scale;
83            return result;
84        }
85    }
86
87    // backup guess for out-of-range integers
88
89    let approx_scale = bit_count * stdlib::f64::consts::LOG10_2;
90    let approx_scale_int = approx_scale.trunc();
91    let approx_scale_frac = approx_scale - approx_scale_int;
92
93    let recip = libm::exp10(-approx_scale_frac);
94    let mut res = BigDecimal::from_f32((magic_factor * recip) as f32).unwrap();
95    res.scale += approx_scale_int as i64;
96    res.scale -= scale;
97    return res;
98}
99
100
101#[cfg(test)]
102mod test_make_inv_guess {
103    use super::*;
104    use paste::paste;
105
106    macro_rules! impl_case {
107        ( $bin_count:literal, -$scale:literal => $expected:literal ) => {
108            paste! { impl_case!( [< case_ $bin_count _n $scale >]: $bin_count, -$scale => $expected); }
109        };
110        ( $bin_count:literal, $scale:literal => $expected:literal ) => {
111            paste! { impl_case!( [< case_ $bin_count _ $scale >]: $bin_count, $scale => $expected); }
112        };
113        ( $name:ident: $bin_count:expr, $scale:expr => $expected:literal ) => {
114            impl_case!($name: $bin_count, $scale, prec=5 => $expected);
115        };
116        ( $name:ident: $bin_count:expr, $scale:expr, prec=$prec:literal => $expected:literal ) => {
117            #[test]
118            fn $name() {
119                let guess = make_inv_guess($bin_count, $scale);
120                let expected: BigDecimal = $expected.parse().unwrap();
121                assert_eq!(guess.with_prec($prec), expected.with_prec($prec));
122            }
123        };
124    }
125
126    impl_case!(0, 0 => "0.69315");
127    impl_case!(1, 0 => "0.34657");
128    impl_case!(2, 0 => "0.17329");
129    impl_case!(2, 1 => "1.7329");
130
131    // 1 / (2^3 * 10^5) ~
132    impl_case!(3, -5 => "8.6643e-07");
133
134    // 2^-20
135    impl_case!(20, 0 => "6.6104e-07");
136    impl_case!(20, -900 => "6.6104E-907");
137    impl_case!(20, 800 => "6.6104E+793");
138
139    impl_case!(40, 10000 => "6.3041E+9987");
140
141    impl_case!(70, -5 => "5.8712e-27");
142    impl_case!(70, 5 => "5.8712e-17");
143    impl_case!(70, 50 => "5.8712e+28");
144
145    impl_case!(888, -300 => "3.3588E-568");
146    impl_case!(888, -19 => "3.3588E-287");
147    impl_case!(888, 0 => "3.3588E-268");
148    impl_case!(888, 270 => "335.88");
149
150    impl_case!(1022, 10 => "1.5423e-298");
151    impl_case!(1022, 308 => "1.5423");
152
153    impl_case!(1038, 316 => "2353.4");
154
155    impl_case!(case_31028_n659: 31028, -659 => "3.0347E-10000");
156    impl_case!(case_31028_0: 31028, 0 => "3.0347E-9341");
157    impl_case!(case_31028_1: 31028, 1 => "3.0347E-9340");
158    impl_case!(case_31028_9340: 31028, 9340 => ".30347");
159    impl_case!(case_31028_10000: 31028, 10000 => "3.0347E+659");
160
161    // impl_case!(case_max: u64::MAX, 270 => "335.88");
162}
163
164#[cfg(test)]
165mod test {
166    use super::*;
167    use paste::paste;
168    use stdlib::num::NonZeroU64;
169
170    #[test]
171    fn test_inverse_35543972957198043e291() {
172        let v = vec![
173            0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
174            0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
175            2324389888, 849200558
176        ];
177        let x = BigInt::new(Sign::Minus, v);
178        let d = BigDecimal::from(x);
179        let expected = "-2.813416500187520746852694701086705659180043761702417561798711758892800449936819185796527214192677476E-308".parse::<BigDecimal>().unwrap();
180        assert_eq!(d.inverse(), expected);
181
182        assert_eq!(d.neg().inverse(), expected.neg());
183    }
184
185    macro_rules! impl_case {
186        ($name:ident: $prec:literal, $round:ident => $expected:literal) => {
187            #[test]
188            fn $name() {
189                let n = test_input();
190                let prec = NonZeroU64::new($prec).unwrap();
191                let rounding = RoundingMode::$round;
192                let ctx = Context::new(prec, rounding);
193
194                let result = n.inverse_with_context(&ctx);
195
196                let expected = $expected.parse::<BigDecimal>().unwrap();
197                assert_eq!(&result, &expected);
198
199                let product = result * &n;
200                let epsilon = BigDecimal::new(BigInt::one(), $prec - 1);
201                let diff = (BigDecimal::one() - &product).abs();
202                assert!(diff < epsilon);
203            }
204        };
205        (prec=$prec:literal, round=$round:ident => $expected:literal) => {
206            paste! {
207                #[test]
208                fn [< case_prec $prec _round_ $round:lower >] () {
209                    let n = test_input();
210                    let prec = NonZeroU64::new($prec).unwrap();
211                    let rounding = RoundingMode::$round;
212                    let ctx = Context::new(prec, rounding);
213
214                    let result = n.inverse_with_context(&ctx);
215
216                    let expected = $expected.parse::<BigDecimal>().unwrap();
217                    assert_eq!(&result, &expected);
218                    assert_eq!(&result.scale, &expected.scale);
219                }
220            }
221        };
222        (prec=$prec:literal, round=$($round:ident),+ => $expected:literal) => {
223            $( impl_case!(prec=$prec, round=$round => $expected); )*
224        };
225    }
226
227    mod invert_one {
228        use super::*;
229
230        fn test_input() -> BigDecimal {
231            1u8.into()
232        }
233
234        impl_case!(prec=1, round=Up,Down => "1");
235        impl_case!(prec=2, round=Up,Down => "1.0");
236        impl_case!(prec=7, round=Up,Down => "1.000000");
237    }
238
239    mod invert_n1d00 {
240        use super::*;
241
242        fn test_input() -> BigDecimal {
243            "-1.00".parse().unwrap()
244        }
245
246        impl_case!(prec=1, round=Up,Down => "-1");
247        impl_case!(prec=5, round=Up,Down => "-1.0000");
248    }
249
250    mod invert_n1000en8 {
251        use super::*;
252
253        fn test_input() -> BigDecimal {
254            "1000e-8".parse().unwrap()
255        }
256
257        impl_case!(prec=1, round=Up,Down => "1e5");
258        impl_case!(prec=5, round=Up,Down => "10000e1");
259        impl_case!(prec=6, round=Up,Down => "100000");
260        impl_case!(prec=8, round=Up,Down => "100000.00");
261    }
262
263    mod invert_seven {
264        use super::*;
265
266        fn test_input() -> BigDecimal {
267            BigDecimal::from(7u8)
268        }
269
270        impl_case!(case_prec10_round_down: 10, Down => "0.1428571428");
271        impl_case!(case_prec10_round_up: 10, Up => "0.1428571429");
272
273        impl_case!(case_prec11_round_ceiling: 11, Ceiling => "0.14285714286");
274    }
275
276    mod invert_ten {
277        use super::*;
278
279        fn test_input() -> BigDecimal {
280            10u8.into()
281        }
282
283        impl_case!(case_prec1_round_down: 1, Down => "0.1");
284        impl_case!(case_prec2_round_down: 2, Down => "0.10");
285        impl_case!(prec=10, round=Up, Down => "0.1000000000");
286    }
287
288    mod invert_n3242342d34324 {
289        use super::*;
290
291        fn test_input() -> BigDecimal {
292            "-3242342.34324".parse().unwrap()
293        }
294
295        // note: floor ceiling wrong
296        impl_case!(prec=50, round=Up, Ceiling => "-3.0841900519385698894827476971712670726697831310897E-7");
297        impl_case!(prec=50, round=Down, Floor => "-3.0841900519385698894827476971712670726697831310896E-7");
298    }
299
300
301    mod invert_2d8722377233432854650en126 {
302        use super::*;
303
304        fn test_input() -> BigDecimal {
305            "28722377233432854650456573411382289859440620032075590707304700193738855195818029876568741547799767753181511758371393266031229989006058870578446812747289276920741036671713994469786904880406812933015496296559493964954240161851051500623562557032166800306346000498803201936493334049050141321136859175463065287081665388768669799901545047760009765625e-469"
306            .parse().unwrap()
307        }
308
309        impl_case!(prec=1,  round=Up => "4e125");
310        impl_case!(prec=5,  round=Up => "3.4817e+125");
311        impl_case!(prec=25, round=Up => "3.481605968311006434080812E+125");
312    }
313
314    #[test]
315    fn inv_random_number() {
316        let n = BigDecimal::try_from(0.08121970592310568).unwrap();
317
318        let ctx = Context::new(NonZeroU64::new(40).unwrap(), RoundingMode::Down);
319        let i = n.inverse_with_context(&ctx);
320        assert_eq!(&i, &"12.31228294456944530942557443718279245563".parse::<BigDecimal>().unwrap());
321
322        let product = i * &n;
323        assert!(BigDecimal::one() - &product < "1e-39".parse::<BigDecimal>().unwrap());
324    }
325
326    #[cfg(property_tests)]
327    mod prop {
328        use super::*;
329        use proptest::*;
330        use num_traits::FromPrimitive;
331
332        proptest! {
333
334            #[test]
335            fn inverse_multiplies_to_one(f: f64, prec in 1..100u64) {
336                // ignore non-normal numbers
337                prop_assume!(f.is_normal());
338                prop_assume!(f != 0.0);
339
340                let n = BigDecimal::from_f64(f).unwrap();
341
342                let ctx = Context::new(NonZeroU64::new(prec).unwrap(), RoundingMode::Up);
343                let i = n.inverse_with_context(&ctx);
344                let product = &i * &n;
345
346                // accurate to precision minus one (due to rounding)
347                let epsilon = BigDecimal::new(1.into(), prec as i64 - 1);
348                let diff_from_one = BigDecimal::one() - &product;
349
350                prop_assert!(diff_from_one.abs() < epsilon, "{} >= {}", diff_from_one.abs(), epsilon);
351            }
352        }
353    }
354}