zerotrie/builder/mod.rs
1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5//! # ZeroTrie Builder
6//!
7//! There are two implementations of the ZeroTrie Builder:
8//!
9//! - [konst::ZeroTrieBuilderConst] allows for human-readable const construction
10//! - [nonconst::ZeroTrieBuilder] has the full feaure set but requires `alloc`
11//!
12//! The two builders follow the same algorithm but have different capabilities.
13//!
14//! ## Builder Algorithm Overview
15//!
16//! The tries are built backwards, from the last node to the first node. The key step of the
17//! algorithm is **determining what is the next node to prepend.**
18//!
19//! In the simple case of [`ZeroTrieSimpleAscii`], all nodes are binary-search, so if the input
20//! strings are provided in lexicographic order, there is a simple, deterministic method for
21//! identifying the next node. This insight is what enables us to make the const builder.
22//!
23//! The builder works with the following intermediate state variables:
24//!
25//! - `prefix_len` indicates the byte index we are currently processing.
26//! - `i` and `j` bracket a window of strings in the input that share the same prefix.
27//! - `current_len` is the length in bytes of the current self-contained trie.
28//! - `lengths_stack` contains metadata for branch nodes.
29//!
30//! Consider a trie containing the following strings and values:
31//!
32//! - "" → 11
33//! - "ad" → 22
34//! - "adef" → 33
35//! - "adghk" → 44
36//!
37//! Suppose `prefix_len = 2`, `i = 1`, and `j = 4`. This would indicate that we
38//! have are evaluating the strings with the "ad" prefix, which extend from
39//! index 1 (inclusive) to index 4 (exclusive).
40//!
41//! What follows is a verbal explanation of the build steps for the above trie.
42//! When a node is prepended, it is shown in **boldface**.
43//!
44//! 1. Initialize the builder by setting `i=3`, `j=4`, `prefix_len=5` (the last string),
45//! `current_len=0`, and `lengths_stack` empty. Start the main loop.
46//! 2. Top of loop. The string at `i` is equal in length to `prefix_len`, so we prepend
47//! our first node: a **value node 44**, which requires a 2-byte varint. Increase
48//! `current_len` to 2.
49//! 3. Reduce `prefix_len` to 4, read our `key_ascii="k"`, and recalculate `i` and `j`
50//! _(this calculation is a long chunk of code in the builder impls)_. Since there is no
51//! other string with the prefix "adgh", `i` and `j` stay the same, we prepend an
52//! **ASCII node "k"**, increase `current_len` to 3, and continue the main loop.
53//! 4. Top of loop. The string at `i` is of length 5, but `prefix_len` is 4, so there is
54//! no value node to prepend.
55//! 5. Reduce `prefix_len` to 3, read our `key_ascii="h"`, and recalculate `i` and `j`.
56//! There are no other strings sharing the prefix "abg", so we prepend an
57//! **ASCII node "h"**, increase `current_len` to 4, and continue the main loop.
58//! 6. Top of loop. There is still no value node to prepend.
59//! 7. Reduce `prefix_len` to 2, read our `key_ascii="g"`, and recalculate `i` and `j`.
60//! We find that `i=1` and `j=4`, the range of strings sharing the prefix "ad". Since
61//! `i` or `j` changed, proceed to evaluate the branch node.
62//! 8. The last branch byte `ascii_j` for this prefix is "g", which is the same as `key_ascii`,
63//! so we are the _last_ target of a branch node. Push an entry onto `lengths_stack`:
64//! `BranchMeta { ascii: "g", cumulative_length: 4, local_length: 4, count: 1 }`.
65//! 9. The first branch byte `ascii_i` for this prefix is "e", which is NOT equal to `key_ascii`,
66//! so we are _not the first_ target of a branch node. We therefore start evaluating the
67//! string preceding where we were at the top of the current loop. We set `i=2`, `j=3`,
68//! `prefix_len=4` (length of the string at `i`), and continue the main loop.
69//! 10. Top of loop. Since the string at `i` is equal in length to `prefix_len`, we prepend a
70//! **value node 33** (which requires a 2-byte varint) and increase `current_len` to 2.
71//! 11. Reduce `prefix_len` to 3, read our `key_ascii="f"`, and recalculate `i` and `j`.
72//! They stay the same, so we prepend an **ASCII node "f"**, increase `current_len` to 3,
73//! and continue the main loop.
74//! 12. Top of loop. No value node this time.
75//! 13. Reduce `prefix_len` to 2, read our `key_ascii="e"`, and recalculate `i` and `j`.
76//! They go back to `i=1` and `j=4`.
77//! 14. The last branch byte `ascii_j` for this prefix is "g", which is NOT equal to `key_ascii`,
78//! so we are _not the last_ target of a branch node. We peek at the entry at the front of
79//! the lengths stack and use it to push another entry onto the stack:
80//! `BranchMeta { ascii: "e", cumulative_length: 7, local_length: 3, count: 2 }`
81//! 15. The first branch byte `ascii_i` for this prefix is "e", which is the same as `key_ascii`,
82//! wo we are the _first_ target of a branch node. We can therefore proceed to prepend the
83//! metadata for the branch node. We peek at the top of the stack and find that there are 2
84//! tries reachable from this branch and they have a total byte length of 5. We then pull off
85//! 2 entries from the stack into a local variable `branch_metas`. From here, we write out
86//! the **offset table**, **lookup table**, and **branch head node**, which are determined
87//! from the metadata entries. We set `current_len` to the length of the two tries plus the
88//! metadata, which happens to be 11. Then we return to the top of the main loop.
89//! 16. Top of loop. The string at `i` is length 2, which is the same as `prefix_len`, so we
90//! prepend a **value node 22** (2-byte varint) and increase `current_len` to 13.
91//! 17. Reduce `prefix_len` to 1, read our `key_ascii="d"`, and recalculate `i` and `j`.
92//! They stay the same, so we prepend an **ASCII node "d"**, increase `current_len` to 14,
93//! and continue the main loop.
94//! 18. Top of loop. No value node this time.
95//! 19. Reduce `prefix_len` to 0, read our `key_ascii="a"`, and recalculate `i` and `j`.
96//! They change to `i=0` and `j=4`, since all strings have the empty string as a prefix.
97//! However, `ascii_i` and `ascii_j` both equal `key_ascii`, so we prepend **ASCII node "a"**,
98//! increase `current_len` to 15, and continue the main loop.
99//! 16. Top of loop. The string at `i` is length 0, which is the same as `prefix_len`, so we
100//! prepend a **value node 11** and increase `current_len` to 16.
101//! 17. We can no longer reduce `prefix_len`, so our trie is complete.
102//!
103//! ## Perfect Hash Reordering
104//!
105//! When the PHF is added to the mix, the main change is that the strings are no longer in sorted
106//! order when they are in the trie. To resolve this issue, when adding a branch node, the target
107//! tries are rearranged in-place in the buffer to be in the correct order for the PHF.
108//!
109//! ## Example
110//!
111//! Here is the output of the trie described above.
112//!
113//! ```
114//! use zerotrie::ZeroTrieSimpleAscii;
115//!
116//! const DATA: [(&str, usize); 4] =
117//! [("", 11), ("ad", 22), ("adef", 33), ("adghk", 44)];
118//!
119//! // As demonstrated above, the required capacity for this trie is 16 bytes
120//! const TRIE: ZeroTrieSimpleAscii<[u8; 16]> =
121//! ZeroTrieSimpleAscii::from_sorted_str_tuples(&DATA);
122//!
123//! assert_eq!(
124//! TRIE.as_bytes(),
125//! &[
126//! 0x8B, // value node 11
127//! b'a', // ASCII node 'a'
128//! b'd', // ASCII node 'd'
129//! 0x90, // value node 22 lead byte
130//! 0x06, // value node 22 trail byte
131//! 0xC2, // branch node 2
132//! b'e', // first target of branch
133//! b'g', // second target of branch
134//! 3, // offset
135//! b'f', // ASCII node 'f'
136//! 0x90, // value node 33 lead byte
137//! 0x11, // value node 33 trail byte
138//! b'h', // ASCII node 'h'
139//! b'k', // ASCII node 'k'
140//! 0x90, // value node 44 lead byte
141//! 0x1C, // value node 44 trail byte
142//! ]
143//! );
144//!
145//! assert_eq!(TRIE.get(b""), Some(11));
146//! assert_eq!(TRIE.get(b"ad"), Some(22));
147//! assert_eq!(TRIE.get(b"adef"), Some(33));
148//! assert_eq!(TRIE.get(b"adghk"), Some(44));
149//! assert_eq!(TRIE.get(b"unknown"), None);
150//! ```
151
152mod branch_meta;
153pub(crate) mod bytestr;
154pub(crate) mod konst;
155#[cfg(feature = "litemap")]
156mod litemap;
157#[cfg(feature = "alloc")]
158pub(crate) mod nonconst;
159
160use bytestr::ByteStr;
161
162use super::ZeroTrieSimpleAscii;
163
164impl<const N: usize> ZeroTrieSimpleAscii<[u8; N]> {
165 /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
166 ///
167 /// This function needs to know the exact length of the resulting trie at compile time. To
168 /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
169 /// compile error which will tell you how to set `N`, like this:
170 ///
171 /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
172 ///
173 /// That error message says you need to set `N` to 17.
174 ///
175 /// Also see [`Self::from_sorted_str_tuples`].
176 ///
177 /// # Panics
178 ///
179 /// Panics if `items` is not sorted or if `N` is not correct.
180 ///
181 /// # Examples
182 ///
183 /// Create a `const` ZeroTrieSimpleAscii at compile time:
184 ///
185 /// ```
186 /// use zerotrie::ZeroTrieSimpleAscii;
187 ///
188 /// // The required capacity for this trie happens to be 17 bytes
189 /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
190 /// ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
191 /// (b"bar", 2),
192 /// (b"bazzoo", 3),
193 /// (b"foo", 1),
194 /// ]);
195 ///
196 /// assert_eq!(TRIE.get(b"foo"), Some(1));
197 /// assert_eq!(TRIE.get(b"bar"), Some(2));
198 /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
199 /// assert_eq!(TRIE.get(b"unknown"), None);
200 /// ```
201 ///
202 /// Panics if strings are not sorted:
203 ///
204 /// ```compile_fail
205 /// # use zerotrie::ZeroTrieSimpleAscii;
206 /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
207 /// (b"foo", 1),
208 /// (b"bar", 2),
209 /// (b"bazzoo", 3),
210 /// ]);
211 /// ```
212 ///
213 /// Panics if capacity is too small:
214 ///
215 /// ```compile_fail
216 /// # use zerotrie::ZeroTrieSimpleAscii;
217 /// const TRIE: ZeroTrieSimpleAscii<[u8; 15]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
218 /// (b"bar", 2),
219 /// (b"bazzoo", 3),
220 /// (b"foo", 1),
221 /// ]);
222 /// ```
223 ///
224 /// Panics if capacity is too large:
225 ///
226 /// ```compile_fail
227 /// # use zerotrie::ZeroTrieSimpleAscii;
228 /// const TRIE: ZeroTrieSimpleAscii<[u8; 20]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
229 /// (b"bar", 2),
230 /// (b"bazzoo", 3),
231 /// (b"foo", 1),
232 /// ]);
233 /// ```
234 pub const fn from_sorted_u8_tuples(tuples: &[(&[u8], usize)]) -> Self {
235 use konst::*;
236 let byte_str_slice = ByteStr::from_byte_slice_with_value(tuples);
237 let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
238 match result {
239 Ok(s) => Self::from_store(s.build_or_panic()),
240 Err(_) => panic!("Failed to build ZeroTrie"),
241 }
242 }
243
244 /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
245 ///
246 /// This function needs to know the exact length of the resulting trie at compile time. To
247 /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
248 /// compile error which will tell you how to set `N`, like this:
249 ///
250 /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
251 ///
252 /// That error message says you need to set `N` to 17.
253 ///
254 /// Also see [`Self::from_sorted_u8_tuples`].
255 ///
256 /// # Panics
257 ///
258 /// Panics if `items` is not sorted, if `N` is not correct, or if any of the strings contain
259 /// non-ASCII characters.
260 ///
261 /// # Examples
262 ///
263 /// Create a `const` ZeroTrieSimpleAscii at compile time:
264 ///
265 /// ```
266 /// use zerotrie::ZeroTrieSimpleAscii;
267 ///
268 /// // The required capacity for this trie happens to be 17 bytes
269 /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
270 /// ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
271 /// ("bar", 2),
272 /// ("bazzoo", 3),
273 /// ("foo", 1),
274 /// ]);
275 ///
276 /// assert_eq!(TRIE.get(b"foo"), Some(1));
277 /// assert_eq!(TRIE.get(b"bar"), Some(2));
278 /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
279 /// assert_eq!(TRIE.get(b"unknown"), None);
280 /// ```
281 ///
282 /// Panics if the strings are not ASCII:
283 ///
284 /// ```compile_fail
285 /// # use zerotrie::ZeroTrieSimpleAscii;
286 /// const TRIE: ZeroTrieSimpleAscii<[u8; 100]> = ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
287 /// ("bár", 2),
288 /// ("båzzöo", 3),
289 /// ("foo", 1),
290 /// ]);
291 /// ```
292 pub const fn from_sorted_str_tuples(tuples: &[(&str, usize)]) -> Self {
293 use konst::*;
294 let byte_str_slice = ByteStr::from_str_slice_with_value(tuples);
295 // 100 is the value of `K`, the size of the lengths stack. If compile errors are
296 // encountered, this number may need to be increased.
297 let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
298 match result {
299 Ok(s) => Self::from_store(s.build_or_panic()),
300 Err(_) => panic!("Failed to build ZeroTrie"),
301 }
302 }
303}