zerotrie/builder/
mod.rs

1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5//! # ZeroTrie Builder
6//!
7//! There are two implementations of the ZeroTrie Builder:
8//!
9//! - [konst::ZeroTrieBuilderConst] allows for human-readable const construction
10//! - [nonconst::ZeroTrieBuilder] has the full feaure set but requires `alloc`
11//!
12//! The two builders follow the same algorithm but have different capabilities.
13//!
14//! ## Builder Algorithm Overview
15//!
16//! The tries are built backwards, from the last node to the first node. The key step of the
17//! algorithm is **determining what is the next node to prepend.**
18//!
19//! In the simple case of [`ZeroTrieSimpleAscii`], all nodes are binary-search, so if the input
20//! strings are provided in lexicographic order, there is a simple, deterministic method for
21//! identifying the next node. This insight is what enables us to make the const builder.
22//!
23//! The builder works with the following intermediate state variables:
24//!
25//! - `prefix_len` indicates the byte index we are currently processing.
26//! - `i` and `j` bracket a window of strings in the input that share the same prefix.
27//! - `current_len` is the length in bytes of the current self-contained trie.
28//! - `lengths_stack` contains metadata for branch nodes.
29//!
30//! Consider a trie containing the following strings and values:
31//!
32//! - "" → 11
33//! - "ad" → 22
34//! - "adef" → 33
35//! - "adghk" → 44
36//!
37//! Suppose `prefix_len = 2`, `i = 1`, and `j = 4`. This would indicate that we
38//! have are evaluating the strings with the "ad" prefix, which extend from
39//! index 1 (inclusive) to index 4 (exclusive).
40//!
41//! What follows is a verbal explanation of the build steps for the above trie.
42//! When a node is prepended, it is shown in **boldface**.
43//!
44//! 1. Initialize the builder by setting `i=3`, `j=4`, `prefix_len=5` (the last string),
45//!    `current_len=0`, and `lengths_stack` empty. Start the main loop.
46//! 2. Top of loop. The string at `i` is equal in length to `prefix_len`, so we prepend
47//!    our first node: a **value node 44**, which requires a 2-byte varint. Increase
48//!    `current_len` to 2.
49//! 3. Reduce `prefix_len` to 4, read our `key_ascii="k"`, and recalculate `i` and `j`
50//!    _(this calculation is a long chunk of code in the builder impls)_. Since there is no
51//!    other string with the prefix "adgh", `i` and `j` stay the same, we prepend an
52//!    **ASCII node "k"**, increase `current_len` to 3, and continue the main loop.
53//! 4. Top of loop. The string at `i` is of length 5, but `prefix_len` is 4, so there is
54//!    no value node to prepend.
55//! 5. Reduce `prefix_len` to 3, read our `key_ascii="h"`, and recalculate `i` and `j`.
56//!    There are no other strings sharing the prefix "abg", so we prepend an
57//!    **ASCII node "h"**, increase `current_len` to 4, and continue the main loop.
58//! 6. Top of loop. There is still no value node to prepend.
59//! 7. Reduce `prefix_len` to 2, read our `key_ascii="g"`, and recalculate `i` and `j`.
60//!    We find that `i=1` and `j=4`, the range of strings sharing the prefix "ad". Since
61//!    `i` or `j` changed, proceed to evaluate the branch node.
62//! 8. The last branch byte `ascii_j` for this prefix is "g", which is the same as `key_ascii`,
63//!    so we are the _last_ target of a branch node. Push an entry onto `lengths_stack`:
64//!    `BranchMeta { ascii: "g", cumulative_length: 4, local_length: 4, count: 1 }`.
65//! 9. The first branch byte `ascii_i` for this prefix is "e", which is NOT equal to `key_ascii`,
66//!    so we are _not the first_ target of a branch node. We therefore start evaluating the
67//!    string preceding where we were at the top of the current loop. We set `i=2`, `j=3`,
68//!    `prefix_len=4` (length of the string at `i`), and continue the main loop.
69//! 10. Top of loop. Since the string at `i` is equal in length to `prefix_len`, we prepend a
70//!     **value node 33** (which requires a 2-byte varint) and increase `current_len` to 2.
71//! 11. Reduce `prefix_len` to 3, read our `key_ascii="f"`, and recalculate `i` and `j`.
72//!     They stay the same, so we prepend an **ASCII node "f"**, increase `current_len` to 3,
73//!     and continue the main loop.
74//! 12. Top of loop. No value node this time.
75//! 13. Reduce `prefix_len` to 2, read our `key_ascii="e"`, and recalculate `i` and `j`.
76//!     They go back to `i=1` and `j=4`.
77//! 14. The last branch byte `ascii_j` for this prefix is "g", which is NOT equal to `key_ascii`,
78//!     so we are _not the last_ target of a branch node. We peek at the entry at the front of
79//!     the lengths stack and use it to push another entry onto the stack:
80//!     `BranchMeta { ascii: "e", cumulative_length: 7, local_length: 3, count: 2 }`
81//! 15. The first branch byte `ascii_i` for this prefix is "e", which is the same as `key_ascii`,
82//!     wo we are the _first_ target of a branch node. We can therefore proceed to prepend the
83//!     metadata for the branch node. We peek at the top of the stack and find that there are 2
84//!     tries reachable from this branch and they have a total byte length of 5. We then pull off
85//!     2 entries from the stack into a local variable `branch_metas`. From here, we write out
86//!     the **offset table**, **lookup table**, and **branch head node**, which are determined
87//!     from the metadata entries. We set `current_len` to the length of the two tries plus the
88//!     metadata, which happens to be 11. Then we return to the top of the main loop.
89//! 16. Top of loop. The string at `i` is length 2, which is the same as `prefix_len`, so we
90//!     prepend a **value node 22** (2-byte varint) and increase `current_len` to 13.
91//! 17. Reduce `prefix_len` to 1, read our `key_ascii="d"`, and recalculate `i` and `j`.
92//!     They stay the same, so we prepend an **ASCII node "d"**, increase `current_len` to 14,
93//!     and continue the main loop.
94//! 18. Top of loop. No value node this time.
95//! 19. Reduce `prefix_len` to 0, read our `key_ascii="a"`, and recalculate `i` and `j`.
96//!     They change to `i=0` and `j=4`, since all strings have the empty string as a prefix.
97//!     However, `ascii_i` and `ascii_j` both equal `key_ascii`, so we prepend **ASCII node "a"**,
98//!     increase `current_len` to 15, and continue the main loop.
99//! 16. Top of loop. The string at `i` is length 0, which is the same as `prefix_len`, so we
100//!     prepend a **value node 11** and increase `current_len` to 16.
101//! 17. We can no longer reduce `prefix_len`, so our trie is complete.
102//!
103//! ## Perfect Hash Reordering
104//!
105//! When the PHF is added to the mix, the main change is that the strings are no longer in sorted
106//! order when they are in the trie. To resolve this issue, when adding a branch node, the target
107//! tries are rearranged in-place in the buffer to be in the correct order for the PHF.
108//!
109//! ## Example
110//!
111//! Here is the output of the trie described above.
112//!
113//! ```
114//! use zerotrie::ZeroTrieSimpleAscii;
115//!
116//! const DATA: [(&str, usize); 4] =
117//!     [("", 11), ("ad", 22), ("adef", 33), ("adghk", 44)];
118//!
119//! // As demonstrated above, the required capacity for this trie is 16 bytes
120//! const TRIE: ZeroTrieSimpleAscii<[u8; 16]> =
121//!     ZeroTrieSimpleAscii::from_sorted_str_tuples(&DATA);
122//!
123//! assert_eq!(
124//!     TRIE.as_bytes(),
125//!     &[
126//!         0x8B, // value node 11
127//!         b'a', // ASCII node 'a'
128//!         b'd', // ASCII node 'd'
129//!         0x90, // value node 22 lead byte
130//!         0x06, // value node 22 trail byte
131//!         0xC2, // branch node 2
132//!         b'e', // first target of branch
133//!         b'g', // second target of branch
134//!         3,    // offset
135//!         b'f', // ASCII node 'f'
136//!         0x90, // value node 33 lead byte
137//!         0x11, // value node 33 trail byte
138//!         b'h', // ASCII node 'h'
139//!         b'k', // ASCII node 'k'
140//!         0x90, // value node 44 lead byte
141//!         0x1C, // value node 44 trail byte
142//!     ]
143//! );
144//!
145//! assert_eq!(TRIE.get(b""), Some(11));
146//! assert_eq!(TRIE.get(b"ad"), Some(22));
147//! assert_eq!(TRIE.get(b"adef"), Some(33));
148//! assert_eq!(TRIE.get(b"adghk"), Some(44));
149//! assert_eq!(TRIE.get(b"unknown"), None);
150//! ```
151
152mod branch_meta;
153pub(crate) mod bytestr;
154pub(crate) mod konst;
155#[cfg(feature = "litemap")]
156mod litemap;
157#[cfg(feature = "alloc")]
158pub(crate) mod nonconst;
159
160use bytestr::ByteStr;
161
162use super::ZeroTrieSimpleAscii;
163
164impl<const N: usize> ZeroTrieSimpleAscii<[u8; N]> {
165    /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
166    ///
167    /// This function needs to know the exact length of the resulting trie at compile time. To
168    /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
169    /// compile error which will tell you how to set `N`, like this:
170    ///
171    /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
172    ///
173    /// That error message says you need to set `N` to 17.
174    ///
175    /// Also see [`Self::from_sorted_str_tuples`].
176    ///
177    /// # Panics
178    ///
179    /// Panics if `items` is not sorted or if `N` is not correct.
180    ///
181    /// # Examples
182    ///
183    /// Create a `const` ZeroTrieSimpleAscii at compile time:
184    ///
185    /// ```
186    /// use zerotrie::ZeroTrieSimpleAscii;
187    ///
188    /// // The required capacity for this trie happens to be 17 bytes
189    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
190    ///     ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
191    ///         (b"bar", 2),
192    ///         (b"bazzoo", 3),
193    ///         (b"foo", 1),
194    ///     ]);
195    ///
196    /// assert_eq!(TRIE.get(b"foo"), Some(1));
197    /// assert_eq!(TRIE.get(b"bar"), Some(2));
198    /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
199    /// assert_eq!(TRIE.get(b"unknown"), None);
200    /// ```
201    ///
202    /// Panics if strings are not sorted:
203    ///
204    /// ```compile_fail
205    /// # use zerotrie::ZeroTrieSimpleAscii;
206    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
207    ///     (b"foo", 1),
208    ///     (b"bar", 2),
209    ///     (b"bazzoo", 3),
210    /// ]);
211    /// ```
212    ///
213    /// Panics if capacity is too small:
214    ///
215    /// ```compile_fail
216    /// # use zerotrie::ZeroTrieSimpleAscii;
217    /// const TRIE: ZeroTrieSimpleAscii<[u8; 15]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
218    ///     (b"bar", 2),
219    ///     (b"bazzoo", 3),
220    ///     (b"foo", 1),
221    /// ]);
222    /// ```
223    ///
224    /// Panics if capacity is too large:
225    ///
226    /// ```compile_fail
227    /// # use zerotrie::ZeroTrieSimpleAscii;
228    /// const TRIE: ZeroTrieSimpleAscii<[u8; 20]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
229    ///     (b"bar", 2),
230    ///     (b"bazzoo", 3),
231    ///     (b"foo", 1),
232    /// ]);
233    /// ```
234    pub const fn from_sorted_u8_tuples(tuples: &[(&[u8], usize)]) -> Self {
235        use konst::*;
236        let byte_str_slice = ByteStr::from_byte_slice_with_value(tuples);
237        let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
238        match result {
239            Ok(s) => Self::from_store(s.build_or_panic()),
240            Err(_) => { ::core::panicking::panic_fmt(format_args!("Failed to build ZeroTrie")); }panic!("Failed to build ZeroTrie"),
241        }
242    }
243
244    /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
245    ///
246    /// This function needs to know the exact length of the resulting trie at compile time. To
247    /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
248    /// compile error which will tell you how to set `N`, like this:
249    ///
250    /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
251    ///
252    /// That error message says you need to set `N` to 17.
253    ///
254    /// Also see [`Self::from_sorted_u8_tuples`].
255    ///
256    /// # Panics
257    ///
258    /// Panics if `items` is not sorted, if `N` is not correct, or if any of the strings contain
259    /// non-ASCII characters.
260    ///
261    /// # Examples
262    ///
263    /// Create a `const` ZeroTrieSimpleAscii at compile time:
264    ///
265    /// ```
266    /// use zerotrie::ZeroTrieSimpleAscii;
267    ///
268    /// // The required capacity for this trie happens to be 17 bytes
269    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
270    ///     ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
271    ///         ("bar", 2),
272    ///         ("bazzoo", 3),
273    ///         ("foo", 1),
274    ///     ]);
275    ///
276    /// assert_eq!(TRIE.get(b"foo"), Some(1));
277    /// assert_eq!(TRIE.get(b"bar"), Some(2));
278    /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
279    /// assert_eq!(TRIE.get(b"unknown"), None);
280    /// ```
281    ///
282    /// Panics if the strings are not ASCII:
283    ///
284    /// ```compile_fail
285    /// # use zerotrie::ZeroTrieSimpleAscii;
286    /// const TRIE: ZeroTrieSimpleAscii<[u8; 100]> = ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
287    ///     ("bár", 2),
288    ///     ("båzzöo", 3),
289    ///     ("foo", 1),
290    /// ]);
291    /// ```
292    pub const fn from_sorted_str_tuples(tuples: &[(&str, usize)]) -> Self {
293        use konst::*;
294        let byte_str_slice = ByteStr::from_str_slice_with_value(tuples);
295        // 100 is the value of `K`, the size of the lengths stack. If compile errors are
296        // encountered, this number may need to be increased.
297        let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
298        match result {
299            Ok(s) => Self::from_store(s.build_or_panic()),
300            Err(_) => { ::core::panicking::panic_fmt(format_args!("Failed to build ZeroTrie")); }panic!("Failed to build ZeroTrie"),
301        }
302    }
303}