bigdecimal/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
// Copyright 2016 Adam Sunderland
// 2016-2023 Andrew Kubera
// 2017 Ruben De Smet
// See the COPYRIGHT file at the top-level directory of this
// distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A Big Decimal
//!
//! `BigDecimal` allows storing any real number to arbitrary precision; which
//! avoids common floating point errors (such as 0.1 + 0.2 ≠0.3) at the
//! cost of complexity.
//!
//! Internally, `BigDecimal` uses a `BigInt` object, paired with a 64-bit
//! integer which determines the position of the decimal point. Therefore,
//! the precision *is not* actually arbitrary, but limited to 2<sup>63</sup>
//! decimal places.
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! It is not recommended to convert a floating point number to a decimal
//! directly, as the floating point representation may be unexpected.
//!
//! # Example
//!
//! ```
//! use bigdecimal::BigDecimal;
//! use std::str::FromStr;
//!
//! let input = "0.8";
//! let dec = BigDecimal::from_str(&input).unwrap();
//! let float = f32::from_str(&input).unwrap();
//!
//! println!("Input ({}) with 10 decimals: {} vs {})", input, dec, float);
//! ```
#![cfg_attr(not(feature = "std"), no_std)]
#![allow(clippy::style)]
#![allow(clippy::excessive_precision)]
#![allow(clippy::unreadable_literal)]
#![allow(clippy::unusual_byte_groupings)]
#![allow(clippy::needless_late_init)]
#![allow(clippy::needless_return)]
#![allow(clippy::suspicious_arithmetic_impl)]
#![allow(clippy::suspicious_op_assign_impl)]
#![allow(clippy::redundant_field_names)]
#![allow(clippy::approx_constant)]
#![allow(clippy::wrong_self_convention)]
#![cfg_attr(test, allow(clippy::useless_vec))]
#![allow(unused_imports)]
pub extern crate num_bigint;
pub extern crate num_traits;
extern crate num_integer;
#[cfg(test)]
extern crate paste;
#[cfg(feature = "serde")]
extern crate serde as serde_crate;
#[cfg(all(test, any(feature = "serde", feature = "serde_json")))]
extern crate serde_test;
#[cfg(all(test, feature = "serde_json"))]
extern crate serde_json;
#[cfg(feature = "std")]
include!("./with_std.rs");
#[cfg(not(feature = "std"))]
include!("./without_std.rs");
// make available some standard items
use self::stdlib::cmp::{self, Ordering};
use self::stdlib::convert::TryFrom;
use self::stdlib::default::Default;
use self::stdlib::hash::{Hash, Hasher};
use self::stdlib::num::{ParseFloatError, ParseIntError};
use self::stdlib::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign, Rem, RemAssign,
};
use self::stdlib::iter::Sum;
use self::stdlib::str::FromStr;
use self::stdlib::string::{String, ToString};
use self::stdlib::fmt;
use self::stdlib::Vec;
use self::stdlib::borrow::Cow;
use num_bigint::{BigInt, BigUint, ParseBigIntError, Sign};
use num_integer::Integer as IntegerTrait;
pub use num_traits::{FromPrimitive, Num, One, Pow, Signed, ToPrimitive, Zero};
use stdlib::f64::consts::LOG2_10;
// const DEFAULT_PRECISION: u64 = ${RUST_BIGDECIMAL_DEFAULT_PRECISION} or 100;
include!(concat!(env!("OUT_DIR"), "/default_precision.rs"));
#[macro_use]
mod macros;
// "low level" functions
mod arithmetic;
// From<T>, To<T>, TryFrom<T> impls
mod impl_convert;
mod impl_trait_from_str;
// Add<T>, Sub<T>, etc...
mod impl_ops;
mod impl_ops_add;
mod impl_ops_sub;
mod impl_ops_mul;
mod impl_ops_div;
mod impl_ops_rem;
// PartialEq
mod impl_cmp;
// Implementations of num_traits
mod impl_num;
// Implementations of std::fmt traits and stringificaiton routines
mod impl_fmt;
// Implementations for deserializations and serializations
#[cfg(any(feature = "serde", feature="serde_json"))]
pub mod impl_serde;
/// re-export serde-json derive modules
#[cfg(feature = "serde_json")]
pub mod serde {
/// Parse JSON number directly to BigDecimal
pub use impl_serde::arbitrary_precision as json_num;
/// Parse JSON (number | null) directly to Option<BigDecimal>
pub use impl_serde::arbitrary_precision_option as json_num_option;
}
// construct BigDecimals from strings and floats
mod parsing;
// Routines for rounding
pub mod rounding;
pub use rounding::RoundingMode;
// Mathematical context
mod context;
pub use context::Context;
use arithmetic::{
ten_to_the,
ten_to_the_uint,
ten_to_the_u64,
diff,
diff_usize,
count_decimal_digits,
count_decimal_digits_uint,
};
/// Internal function used for rounding
///
/// returns 1 if most significant digit is >= 5, otherwise 0
///
/// This is used after dividing a number by a power of ten and
/// rounding the last digit.
///
#[inline(always)]
fn get_rounding_term(num: &BigInt) -> u8 {
if num.is_zero() {
return 0;
}
let digits = (num.bits() as f64 / LOG2_10) as u64;
let mut n = ten_to_the(digits);
// loop-method
loop {
if *num < n {
return 1;
}
n *= 5;
if *num < n {
return 0;
}
n *= 2;
}
// string-method
// let s = format!("{}", num);
// let high_digit = u8::from_str(&s[0..1]).unwrap();
// if high_digit < 5 { 0 } else { 1 }
}
/// A big decimal type.
///
#[derive(Clone, Eq)]
pub struct BigDecimal {
int_val: BigInt,
// A positive scale means a negative power of 10
scale: i64,
}
#[cfg(not(feature = "std"))]
// f64::exp2 is only available in std, we have to use an external crate like libm
fn exp2(x: f64) -> f64 {
libm::exp2(x)
}
#[cfg(feature = "std")]
fn exp2(x: f64) -> f64 {
x.exp2()
}
impl BigDecimal {
/// Creates and initializes a `BigDecimal`.
///
/// The more explicit method `from_bigint` should be preferred, as new
/// may change in the future.
///
#[inline]
pub fn new(digits: BigInt, scale: i64) -> BigDecimal {
BigDecimal::from_bigint(digits, scale)
}
/// Construct BigDecimal from BigInt and a scale
pub fn from_bigint(digits: BigInt, scale: i64) -> BigDecimal {
BigDecimal {
int_val: digits,
scale: scale,
}
}
/// Construct positive BigDecimal from BigUint and a scale
pub fn from_biguint(digits: BigUint, scale: i64) -> BigDecimal {
let n = BigInt::from_biguint(Sign::Plus, digits);
BigDecimal::from_bigint(n, scale)
}
/// Make a BigDecimalRef of this value
pub fn to_ref(&self) -> BigDecimalRef<'_> {
// search for "From<&'a BigDecimal> for BigDecimalRef<'a>"
self.into()
}
/// Returns the scale of the BigDecimal, the total number of
/// digits to the right of the decimal point (including insignificant
/// leading zeros)
///
/// # Examples
///
/// ```
/// use bigdecimal::BigDecimal;
/// use std::str::FromStr;
///
/// let a = BigDecimal::from(12345); // No fractional part
/// let b = BigDecimal::from_str("123.45").unwrap(); // Fractional part
/// let c = BigDecimal::from_str("0.0000012345").unwrap(); // Completely fractional part
/// let d = BigDecimal::from_str("5e9").unwrap(); // Negative-fractional part
///
/// assert_eq!(a.fractional_digit_count(), 0);
/// assert_eq!(b.fractional_digit_count(), 2);
/// assert_eq!(c.fractional_digit_count(), 10);
/// assert_eq!(d.fractional_digit_count(), -9);
/// ```
#[inline]
pub fn fractional_digit_count(&self) -> i64 {
self.scale
}
/// Creates and initializes a `BigDecimal`.
///
/// Decodes using `str::from_utf8` and forwards to `BigDecimal::from_str_radix`.
/// Only base-10 is supported.
///
/// # Examples
///
/// ```
/// use bigdecimal::{BigDecimal, Zero};
///
/// assert_eq!(BigDecimal::parse_bytes(b"0", 10).unwrap(), BigDecimal::zero());
/// assert_eq!(BigDecimal::parse_bytes(b"13", 10).unwrap(), BigDecimal::from(13));
/// ```
#[inline]
pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigDecimal> {
stdlib::str::from_utf8(buf)
.ok()
.and_then(|s| BigDecimal::from_str_radix(s, radix).ok())
}
/// Return a new BigDecimal object equivalent to self, with internal
/// scaling set to the number specified.
/// If the new_scale is lower than the current value (indicating a larger
/// power of 10), digits will be dropped (as precision is lower)
///
#[inline]
pub fn with_scale(&self, new_scale: i64) -> BigDecimal {
if self.int_val.is_zero() {
return BigDecimal::new(BigInt::zero(), new_scale);
}
match new_scale.cmp(&self.scale) {
Ordering::Greater => {
let scale_diff = new_scale - self.scale;
let int_val = &self.int_val * ten_to_the(scale_diff as u64);
BigDecimal::new(int_val, new_scale)
}
Ordering::Less => {
let scale_diff = self.scale - new_scale;
let int_val = &self.int_val / ten_to_the(scale_diff as u64);
BigDecimal::new(int_val, new_scale)
}
Ordering::Equal => self.clone(),
}
}
/// Return a new BigDecimal after shortening the digits and rounding
///
/// ```
/// # use bigdecimal::*;
///
/// let n: BigDecimal = "129.41675".parse().unwrap();
///
/// assert_eq!(n.with_scale_round(2, RoundingMode::Up), "129.42".parse().unwrap());
/// assert_eq!(n.with_scale_round(-1, RoundingMode::Down), "120".parse().unwrap());
/// assert_eq!(n.with_scale_round(4, RoundingMode::HalfEven), "129.4168".parse().unwrap());
/// ```
pub fn with_scale_round(&self, new_scale: i64, mode: RoundingMode) -> BigDecimal {
use stdlib::cmp::Ordering::*;
if self.int_val.is_zero() {
return BigDecimal::new(BigInt::zero(), new_scale);
}
match new_scale.cmp(&self.scale) {
Ordering::Equal => {
self.clone()
}
Ordering::Greater => {
// increase number of zeros
let scale_diff = new_scale - self.scale;
let int_val = &self.int_val * ten_to_the(scale_diff as u64);
BigDecimal::new(int_val, new_scale)
}
Ordering::Less => {
let (sign, mut digits) = self.int_val.to_radix_le(10);
let digit_count = digits.len();
let int_digit_count = digit_count as i64 - self.scale;
let rounded_int = match int_digit_count.cmp(&-new_scale) {
Equal => {
let (&last_digit, remaining) = digits.split_last().unwrap();
let trailing_zeros = remaining.iter().all(Zero::is_zero);
let rounded_digit = mode.round_pair(sign, (0, last_digit), trailing_zeros);
BigInt::new(sign, vec![rounded_digit as u32])
}
Less => {
debug_assert!(!digits.iter().all(Zero::is_zero));
let rounded_digit = mode.round_pair(sign, (0, 0), false);
BigInt::new(sign, vec![rounded_digit as u32])
}
Greater => {
// location of new rounding point
let scale_diff = (self.scale - new_scale) as usize;
let low_digit = digits[scale_diff - 1];
let high_digit = digits[scale_diff];
let trailing_zeros = digits[0..scale_diff-1].iter().all(Zero::is_zero);
let rounded_digit = mode.round_pair(sign, (high_digit, low_digit), trailing_zeros);
debug_assert!(rounded_digit <= 10);
if rounded_digit < 10 {
digits[scale_diff] = rounded_digit;
} else {
digits[scale_diff] = 0;
let mut i = scale_diff + 1;
loop {
if i == digit_count {
digits.push(1);
break;
}
if digits[i] < 9 {
digits[i] += 1;
break;
}
digits[i] = 0;
i += 1;
}
}
BigInt::from_radix_le(sign, &digits[scale_diff..], 10).unwrap()
}
};
BigDecimal::new(rounded_int, new_scale)
}
}
}
/// Return a new BigDecimal object with same value and given scale,
/// padding with zeros or truncating digits as needed
///
/// Useful for aligning decimals before adding/subtracting.
///
fn take_and_scale(mut self, new_scale: i64) -> BigDecimal {
self.set_scale(new_scale);
self
}
/// Change to requested scale by multiplying or truncating
fn set_scale(&mut self, new_scale: i64) {
if self.int_val.is_zero() {
self.scale = new_scale;
return;
}
match diff(new_scale, self.scale) {
(Ordering::Greater, scale_diff) => {
self.scale = new_scale;
if scale_diff < 20 {
self.int_val *= ten_to_the_u64(scale_diff as u8);
} else {
self.int_val *= ten_to_the(scale_diff);
}
}
(Ordering::Less, scale_diff) => {
self.scale = new_scale;
if scale_diff < 20 {
self.int_val /= ten_to_the_u64(scale_diff as u8);
} else {
self.int_val /= ten_to_the(scale_diff);
}
}
(Ordering::Equal, _) => {},
}
}
/// set scale only if new_scale is greater than current
pub(crate) fn extend_scale_to(&mut self, new_scale: i64) {
if new_scale > self.scale {
self.set_scale(new_scale)
}
}
/// Take and return bigdecimal with the given sign
///
/// The Sign value `NoSign` is ignored: only use Plus & Minus
///
pub(crate) fn take_with_sign(self, sign: Sign) -> BigDecimal {
let BigDecimal { scale, mut int_val } = self;
if int_val.sign() != sign && sign != Sign::NoSign {
int_val = int_val.neg();
}
BigDecimal {
int_val: int_val,
scale: scale,
}
}
/// Return a new BigDecimal object with precision set to new value
///
/// ```
/// # use bigdecimal::*;
///
/// let n: BigDecimal = "129.41675".parse().unwrap();
///
/// assert_eq!(n.with_prec(2), "130".parse().unwrap());
///
/// let n_p12 = n.with_prec(12);
/// let (i, scale) = n_p12.as_bigint_and_exponent();
/// assert_eq!(n_p12, "129.416750000".parse().unwrap());
/// assert_eq!(i, 129416750000_u64.into());
/// assert_eq!(scale, 9);
/// ```
pub fn with_prec(&self, prec: u64) -> BigDecimal {
let digits = self.digits();
match digits.cmp(&prec) {
Ordering::Greater => {
let diff = digits - prec;
let p = ten_to_the(diff);
let (mut q, r) = self.int_val.div_rem(&p);
// check for "leading zero" in remainder term; otherwise round
if p < 10 * &r {
q += get_rounding_term(&r);
}
BigDecimal {
int_val: q,
scale: self.scale - diff as i64,
}
}
Ordering::Less => {
let diff = prec - digits;
BigDecimal {
int_val: &self.int_val * ten_to_the(diff),
scale: self.scale + diff as i64,
}
}
Ordering::Equal => self.clone(),
}
}
/// Return this BigDecimal with the given precision, rounding if needed
#[cfg(rustc_1_46)] // Option::zip
#[allow(clippy::incompatible_msrv)]
pub fn with_precision_round(&self, prec: stdlib::num::NonZeroU64, round: RoundingMode) -> BigDecimal {
let digit_count = self.digits();
let new_prec = prec.get().to_i64();
let new_scale = new_prec
.zip(digit_count.to_i64())
.and_then(|(new_prec, old_prec)| new_prec.checked_sub(old_prec))
.and_then(|prec_diff| self.scale.checked_add(prec_diff))
.expect("precision overflow");
self.with_scale_round(new_scale, round)
}
#[cfg(not(rustc_1_46))]
pub fn with_precision_round(&self, prec: stdlib::num::NonZeroU64, round: RoundingMode) -> BigDecimal {
let new_scale = self.digits().to_i64().and_then(
|old_prec| {
prec.get().to_i64().and_then(
|new_prec| { new_prec.checked_sub(old_prec) })})
.and_then(|prec_diff| self.scale.checked_add(prec_diff))
.expect("precision overflow");
self.with_scale_round(new_scale, round)
}
/// Return the sign of the `BigDecimal` as `num::bigint::Sign`.
///
/// ```
/// # use bigdecimal::{BigDecimal, num_bigint::Sign};
///
/// fn sign_of(src: &str) -> Sign {
/// let n: BigDecimal = src.parse().unwrap();
/// n.sign()
/// }
///
/// assert_eq!(sign_of("-1"), Sign::Minus);
/// assert_eq!(sign_of("0"), Sign::NoSign);
/// assert_eq!(sign_of("1"), Sign::Plus);
/// ```
#[inline]
pub fn sign(&self) -> num_bigint::Sign {
self.int_val.sign()
}
/// Return the internal big integer value and an exponent. Note that a positive
/// exponent indicates a negative power of 10.
///
/// # Examples
///
/// ```
/// use bigdecimal::{BigDecimal, num_bigint::BigInt};
///
/// let n: BigDecimal = "1.23456".parse().unwrap();
/// let expected = ("123456".parse::<BigInt>().unwrap(), 5);
/// assert_eq!(n.as_bigint_and_exponent(), expected);
/// ```
#[inline]
pub fn as_bigint_and_exponent(&self) -> (BigInt, i64) {
(self.int_val.clone(), self.scale)
}
/// Take BigDecimal and split into `num::BigInt` of digits, and the scale
///
/// Scale is number of digits after the decimal point, can be negative.
///
pub fn into_bigint_and_scale(self) -> (BigInt, i64) {
(self.int_val, self.scale)
}
/// Return digits as borrowed Cow of integer digits, and its scale
///
/// Scale is number of digits after the decimal point, can be negative.
///
pub fn as_bigint_and_scale(&self) -> (Cow<'_, BigInt>, i64) {
let cow_int = Cow::Borrowed(&self.int_val);
(cow_int, self.scale)
}
/// Convert into the internal big integer value and an exponent. Note that a positive
/// exponent indicates a negative power of 10.
///
/// # Examples
///
/// ```
/// use bigdecimal::{BigDecimal, num_bigint::BigInt};
///
/// let n: BigDecimal = "1.23456".parse().unwrap();
/// let expected = ("123456".parse::<num_bigint::BigInt>().unwrap(), 5);
/// assert_eq!(n.into_bigint_and_exponent(), expected);
/// ```
#[inline]
pub fn into_bigint_and_exponent(self) -> (BigInt, i64) {
(self.int_val, self.scale)
}
/// Number of digits in the non-scaled integer representation
///
#[inline]
pub fn digits(&self) -> u64 {
count_decimal_digits(&self.int_val)
}
/// Compute the absolute value of number
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n: BigDecimal = "123.45".parse().unwrap();
/// assert_eq!(n.abs(), "123.45".parse().unwrap());
///
/// let n: BigDecimal = "-123.45".parse().unwrap();
/// assert_eq!(n.abs(), "123.45".parse().unwrap());
/// ```
#[inline]
pub fn abs(&self) -> BigDecimal {
BigDecimal {
int_val: self.int_val.abs(),
scale: self.scale,
}
}
/// Multiply decimal by 2 (efficiently)
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n: BigDecimal = "123.45".parse().unwrap();
/// assert_eq!(n.double(), "246.90".parse().unwrap());
/// ```
pub fn double(&self) -> BigDecimal {
if self.is_zero() {
self.clone()
} else {
BigDecimal {
int_val: self.int_val.clone() * 2,
scale: self.scale,
}
}
}
/// Divide decimal by 2 (efficiently)
///
/// *Note*: If the last digit in the decimal is odd, the precision
/// will increase by 1
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n: BigDecimal = "123.45".parse().unwrap();
/// assert_eq!(n.half(), "61.725".parse().unwrap());
/// ```
#[inline]
pub fn half(&self) -> BigDecimal {
if self.is_zero() {
self.clone()
} else if self.int_val.is_even() {
BigDecimal {
int_val: self.int_val.clone().div(2u8),
scale: self.scale,
}
} else {
BigDecimal {
int_val: self.int_val.clone().mul(5u8),
scale: self.scale + 1,
}
}
}
/// Square a decimal: *x²*
///
/// No rounding or truncating of digits; this is the full result
/// of the squaring operation.
///
/// *Note*: doubles the scale of bigdecimal, which might lead to
/// accidental exponential-complexity if used in a loop.
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n: BigDecimal = "1.1156024145937225657484".parse().unwrap();
/// assert_eq!(n.square(), "1.24456874744734405154288399835406316085210256".parse().unwrap());
///
/// let n: BigDecimal = "-9.238597585E+84".parse().unwrap();
/// assert_eq!(n.square(), "8.5351685337567832225E+169".parse().unwrap());
/// ```
pub fn square(&self) -> BigDecimal {
if self.is_zero() || self.is_one() {
self.clone()
} else {
BigDecimal {
int_val: self.int_val.clone() * &self.int_val,
scale: self.scale * 2,
}
}
}
/// Cube a decimal: *x³*
///
/// No rounding or truncating of digits; this is the full result
/// of the cubing operation.
///
/// *Note*: triples the scale of bigdecimal, which might lead to
/// accidental exponential-complexity if used in a loop.
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n: BigDecimal = "1.1156024145937225657484".parse().unwrap();
/// assert_eq!(n.cube(), "1.388443899780141911774491376394890472130000455312878627147979955904".parse().unwrap());
///
/// let n: BigDecimal = "-9.238597585E+84".parse().unwrap();
/// assert_eq!(n.cube(), "-7.88529874035334084567570176625E+254".parse().unwrap());
/// ```
pub fn cube(&self) -> BigDecimal {
if self.is_zero() || self.is_one() {
self.clone()
} else {
BigDecimal {
int_val: self.int_val.clone() * &self.int_val * &self.int_val,
scale: self.scale * 3,
}
}
}
/// Take the square root of the number
///
/// Uses default-precision, set from build time environment variable
//// `RUST_BIGDECIMAL_DEFAULT_PRECISION` (defaults to 100)
///
/// If the value is < 0, None is returned
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n: BigDecimal = "1.1156024145937225657484".parse().unwrap();
/// assert_eq!(n.sqrt().unwrap(), "1.056220817156016181190291268045893004363809142172289919023269377496528394924695970851558013658193913".parse().unwrap());
///
/// let n: BigDecimal = "-9.238597585E+84".parse().unwrap();
/// assert_eq!(n.sqrt(), None);
/// ```
#[inline]
pub fn sqrt(&self) -> Option<BigDecimal> {
self.sqrt_with_context(&Context::default())
}
/// Take the square root of the number, using context for precision and rounding
///
pub fn sqrt_with_context(&self, ctx: &Context) -> Option<BigDecimal> {
if self.is_zero() || self.is_one() {
return Some(self.clone());
}
if self.is_negative() {
return None;
}
let uint = self.int_val.magnitude();
let result = arithmetic::sqrt::impl_sqrt(uint, self.scale, ctx);
Some(result)
}
/// Take the cube root of the number, using default context
///
#[inline]
pub fn cbrt(&self) -> BigDecimal {
self.cbrt_with_context(&Context::default())
}
/// Take cube root of self, using properties of context
pub fn cbrt_with_context(&self, ctx: &Context) -> BigDecimal {
if self.is_zero() || self.is_one() {
return self.clone();
}
arithmetic::cbrt::impl_cbrt_int_scale(&self.int_val, self.scale, ctx)
}
/// Compute the reciprical of the number: x<sup>-1</sup>
#[inline]
pub fn inverse(&self) -> BigDecimal {
self.inverse_with_context(&Context::default())
}
/// Return inverse of self, rounding with ctx
pub fn inverse_with_context(&self, ctx: &Context) -> BigDecimal {
if self.is_zero() || self.is_one() {
return self.clone();
}
let uint = self.int_val.magnitude();
let result = arithmetic::inverse::impl_inverse_uint_scale(uint, self.scale, ctx);
// always copy sign
result.take_with_sign(self.sign())
}
/// Return given number rounded to 'round_digits' precision after the
/// decimal point, using default rounding mode
///
/// Default rounding mode is `HalfEven`, but can be configured at compile-time
/// by the environment variable: `RUST_BIGDECIMAL_DEFAULT_ROUNDING_MODE`
/// (or by patching _build.rs_ )
///
pub fn round(&self, round_digits: i64) -> BigDecimal {
self.with_scale_round(round_digits, Context::default().rounding_mode())
}
/// Return true if this number has zero fractional part (is equal
/// to an integer)
///
#[inline]
pub fn is_integer(&self) -> bool {
if self.scale <= 0 {
true
} else {
(self.int_val.clone() % ten_to_the(self.scale as u64)).is_zero()
}
}
/// Evaluate the natural-exponential function e<sup>x</sup>
///
#[inline]
pub fn exp(&self) -> BigDecimal {
if self.is_zero() {
return BigDecimal::one();
}
let target_precision = DEFAULT_PRECISION;
let precision = self.digits();
let mut term = self.clone();
let mut result = self.clone() + BigDecimal::one();
let mut prev_result = result.clone();
let mut factorial = BigInt::one();
for n in 2.. {
term *= self;
factorial *= n;
// ∑ term=x^n/n!
result += impl_division(term.int_val.clone(), &factorial, term.scale, 117 + precision);
let trimmed_result = result.with_prec(target_precision + 5);
if prev_result == trimmed_result {
return trimmed_result.with_prec(target_precision);
}
prev_result = trimmed_result;
}
unreachable!("Loop did not converge")
}
#[must_use]
pub fn normalized(&self) -> BigDecimal {
if self == &BigDecimal::zero() {
return BigDecimal::zero();
}
let (sign, mut digits) = self.int_val.to_radix_be(10);
let trailing_count = digits.iter().rev().take_while(|i| **i == 0).count();
let trunc_to = digits.len() - trailing_count;
digits.truncate(trunc_to);
let int_val = BigInt::from_radix_be(sign, &digits, 10).unwrap();
let scale = self.scale - trailing_count as i64;
BigDecimal::new(int_val, scale)
}
//////////////////////////
// Formatting methods
/// Create string of decimal in standard decimal notation.
///
/// Unlike standard formatter, this never prints the number in
/// scientific notation.
///
/// # Panics
/// If the magnitude of the exponent is _very_ large, this may
/// cause out-of-memory errors, or overflowing panics.
///
/// # Examples
/// ```
/// # use bigdecimal::BigDecimal;
/// let n: BigDecimal = "123.45678".parse().unwrap();
/// assert_eq!(&n.to_plain_string(), "123.45678");
///
/// let n: BigDecimal = "1e-10".parse().unwrap();
/// assert_eq!(&n.to_plain_string(), "0.0000000001");
/// ```
pub fn to_plain_string(&self) -> String {
let mut output = String::new();
self.write_plain_string(&mut output).expect("Could not write to string");
output
}
/// Write decimal value in decimal notation to the writer object.
///
/// # Panics
/// If the exponent is very large or very small, the number of
/// this will print that many trailing or leading zeros.
/// If exabytes, this will likely panic.
///
pub fn write_plain_string<W: fmt::Write>(&self, wtr: &mut W) -> fmt::Result {
write!(wtr, "{}", impl_fmt::FullScaleFormatter(self.to_ref()))
}
/// Create string of this bigdecimal in scientific notation
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n = BigDecimal::from(12345678);
/// assert_eq!(&n.to_scientific_notation(), "1.2345678e7");
/// ```
pub fn to_scientific_notation(&self) -> String {
let mut output = String::new();
self.write_scientific_notation(&mut output).expect("Could not write to string");
output
}
/// Write bigdecimal in scientific notation to writer `w`
pub fn write_scientific_notation<W: fmt::Write>(&self, w: &mut W) -> fmt::Result {
impl_fmt::write_scientific_notation(self, w)
}
/// Create string of this bigdecimal in engineering notation
///
/// Engineering notation is scientific notation with the exponent
/// coerced to a multiple of three
///
/// ```
/// # use bigdecimal::BigDecimal;
/// let n = BigDecimal::from(12345678);
/// assert_eq!(&n.to_engineering_notation(), "12.345678e6");
/// ```
///
pub fn to_engineering_notation(&self) -> String {
let mut output = String::new();
self.write_engineering_notation(&mut output).expect("Could not write to string");
output
}
/// Write bigdecimal in engineering notation to writer `w`
pub fn write_engineering_notation<W: fmt::Write>(&self, w: &mut W) -> fmt::Result {
impl_fmt::write_engineering_notation(self, w)
}
}
#[derive(Debug, PartialEq, Clone)]
pub enum ParseBigDecimalError {
ParseDecimal(ParseFloatError),
ParseInt(ParseIntError),
ParseBigInt(ParseBigIntError),
Empty,
Other(String),
}
impl fmt::Display for ParseBigDecimalError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use ParseBigDecimalError::*;
match *self {
ParseDecimal(ref e) => e.fmt(f),
ParseInt(ref e) => e.fmt(f),
ParseBigInt(ref e) => e.fmt(f),
Empty => "Failed to parse empty string".fmt(f),
Other(ref reason) => reason[..].fmt(f),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for ParseBigDecimalError {
fn description(&self) -> &str {
"failed to parse bigint/biguint"
}
}
impl From<ParseFloatError> for ParseBigDecimalError {
fn from(err: ParseFloatError) -> ParseBigDecimalError {
ParseBigDecimalError::ParseDecimal(err)
}
}
impl From<ParseIntError> for ParseBigDecimalError {
fn from(err: ParseIntError) -> ParseBigDecimalError {
ParseBigDecimalError::ParseInt(err)
}
}
impl From<ParseBigIntError> for ParseBigDecimalError {
fn from(err: ParseBigIntError) -> ParseBigDecimalError {
ParseBigDecimalError::ParseBigInt(err)
}
}
#[allow(deprecated)] // trim_right_match -> trim_end_match
impl Hash for BigDecimal {
fn hash<H: Hasher>(&self, state: &mut H) {
let mut dec_str = self.int_val.to_str_radix(10);
let scale = self.scale;
let zero = self.int_val.is_zero();
if scale > 0 && !zero {
let mut cnt = 0;
dec_str = dec_str
.trim_right_matches(|x| {
cnt += 1;
x == '0' && cnt <= scale
})
.to_string();
} else if scale < 0 && !zero {
dec_str.push_str(&"0".repeat(self.scale.abs() as usize));
}
dec_str.hash(state);
}
}
impl Default for BigDecimal {
#[inline]
fn default() -> BigDecimal {
Zero::zero()
}
}
impl Zero for BigDecimal {
#[inline]
fn zero() -> BigDecimal {
BigDecimal::new(BigInt::zero(), 0)
}
#[inline]
fn is_zero(&self) -> bool {
self.int_val.is_zero()
}
}
impl One for BigDecimal {
#[inline]
fn one() -> BigDecimal {
BigDecimal::new(BigInt::one(), 0)
}
}
fn impl_division(mut num: BigInt, den: &BigInt, mut scale: i64, max_precision: u64) -> BigDecimal {
// quick zero check
if num.is_zero() {
return BigDecimal::new(num, 0);
}
match (num.is_negative(), den.is_negative()) {
(true, true) => return impl_division(num.neg(), &den.neg(), scale, max_precision),
(true, false) => return -impl_division(num.neg(), den, scale, max_precision),
(false, true) => return -impl_division(num, &den.neg(), scale, max_precision),
(false, false) => (),
}
// shift digits until numerator is larger than denominator (set scale appropriately)
while num < *den {
scale += 1;
num *= 10;
}
// first division
let (mut quotient, mut remainder) = num.div_rem(den);
// division complete
if remainder.is_zero() {
return BigDecimal {
int_val: quotient,
scale: scale,
};
}
let mut precision = count_decimal_digits("ient);
// shift remainder by 1 decimal;
// quotient will be 1 digit upon next division
remainder *= 10;
while !remainder.is_zero() && precision < max_precision {
let (q, r) = remainder.div_rem(den);
quotient = quotient * 10 + q;
remainder = r * 10;
precision += 1;
scale += 1;
}
if !remainder.is_zero() {
// round final number with remainder
quotient += get_rounding_term(&remainder.div(den));
}
let result = BigDecimal::new(quotient, scale);
// println!(" {} / {}\n = {}\n", self, other, result);
return result;
}
impl Signed for BigDecimal {
#[inline]
fn abs(&self) -> BigDecimal {
match self.sign() {
Sign::Plus | Sign::NoSign => self.clone(),
Sign::Minus => -self,
}
}
#[inline]
fn abs_sub(&self, other: &BigDecimal) -> BigDecimal {
if *self <= *other {
Zero::zero()
} else {
self - other
}
}
#[inline]
fn signum(&self) -> BigDecimal {
match self.sign() {
Sign::Plus => One::one(),
Sign::NoSign => Zero::zero(),
Sign::Minus => -Self::one(),
}
}
#[inline]
fn is_positive(&self) -> bool {
self.sign() == Sign::Plus
}
#[inline]
fn is_negative(&self) -> bool {
self.sign() == Sign::Minus
}
}
impl Sum for BigDecimal {
#[inline]
fn sum<I: Iterator<Item = BigDecimal>>(iter: I) -> BigDecimal {
iter.fold(Zero::zero(), |a, b| a + b)
}
}
impl<'a> Sum<&'a BigDecimal> for BigDecimal {
#[inline]
fn sum<I: Iterator<Item = &'a BigDecimal>>(iter: I) -> BigDecimal {
iter.fold(Zero::zero(), |a, b| a + b)
}
}
/// Immutable big-decimal, referencing a borrowed buffer of digits
///
/// The non-digit information like `scale` and `sign` may be changed
/// on these objects, which otherwise would require cloning the full
/// digit buffer in the BigDecimal.
///
/// Built from full `BigDecimal` object using the `to_ref()` method.
/// `BigDecimal` not implement `AsRef`, so we will reserve the method
/// `as_ref()` for a later time.
///
/// May be transformed into full BigDecimal object using the `to_owned()`
/// method.
/// This clones the bigdecimal digits.
///
/// BigDecimalRef (or `Into<BigDecimalRef>`) should be preferred over
/// using `&BigDecimal` for library functions that need an immutable
/// reference to a bigdecimal, as it may be much more efficient.
///
/// NOTE: Using `&BigDecimalRef` is redundant, and not recommended.
///
/// ## Examples
///
/// ```
/// # use bigdecimal::*; use std::ops::Neg;
/// fn add_one<'a, N: Into<BigDecimalRef<'a>>>(n: N) -> BigDecimal {
/// n.into() + 1
/// }
///
/// let n: BigDecimal = "123.456".parse().unwrap();
///
/// // call via "standard" reference (implements Into)
/// let m = add_one(&n);
/// assert_eq!(m, "124.456".parse().unwrap());
///
/// // call by negating the reference (fast: no-digit cloning involved)
/// let m = add_one(n.to_ref().neg());
/// assert_eq!(m, "-122.456".parse().unwrap());
/// ```
///
#[derive(Clone, Copy, Debug, Eq)]
pub struct BigDecimalRef<'a> {
sign: Sign,
digits: &'a BigUint,
scale: i64,
}
impl BigDecimalRef<'_> {
/// Clone digits to make this reference a full BigDecimal object
pub fn to_owned(&self) -> BigDecimal {
BigDecimal {
scale: self.scale,
int_val: BigInt::from_biguint(self.sign, self.digits.clone()),
}
}
/// Clone digits, returning BigDecimal with given scale
///
/// ```
/// # use bigdecimal::*;
///
/// let n: BigDecimal = "123.45678".parse().unwrap();
/// let r = n.to_ref();
/// assert_eq!(r.to_owned_with_scale(5), n.clone());
/// assert_eq!(r.to_owned_with_scale(0), "123".parse().unwrap());
/// assert_eq!(r.to_owned_with_scale(-1), "12e1".parse().unwrap());
///
/// let x = r.to_owned_with_scale(8);
/// assert_eq!(&x, &n);
/// assert_eq!(x.fractional_digit_count(), 8);
/// ```
pub fn to_owned_with_scale(&self, scale: i64) -> BigDecimal {
use stdlib::cmp::Ordering::*;
let digits = match arithmetic::diff(self.scale, scale) {
(Equal, _) => self.digits.clone(),
(Less, scale_diff) => {
if scale_diff < 20 {
self.digits * ten_to_the_u64(scale_diff as u8)
} else {
self.digits * ten_to_the_uint(scale_diff)
}
}
(Greater, scale_diff) => {
if scale_diff < 20 {
self.digits / ten_to_the_u64(scale_diff as u8)
} else {
self.digits / ten_to_the_uint(scale_diff)
}
}
};
BigDecimal {
scale: scale,
int_val: BigInt::from_biguint(self.sign, digits),
}
}
/// Borrow digits as Cow
pub(crate) fn to_cow_biguint_and_scale(&self) -> (Cow<'_, BigUint>, i64) {
let cow_int = Cow::Borrowed(self.digits);
(cow_int, self.scale)
}
/// Sign of decimal
pub fn sign(&self) -> Sign {
self.sign
}
/// Return number of digits 'right' of the decimal point
/// (including leading zeros)
pub fn fractional_digit_count(&self) -> i64 {
self.scale
}
/// Count total number of decimal digits
pub fn count_digits(&self) -> u64 {
count_decimal_digits_uint(self.digits)
}
/// Return the number of trailing zeros in the referenced integer
#[allow(dead_code)]
fn count_trailing_zeroes(&self) -> usize {
if self.digits.is_zero() || self.digits.is_odd() {
return 0;
}
let digit_pairs = self.digits.to_radix_le(100);
let loc = digit_pairs.iter().position(|&d| d != 0).unwrap_or(0);
2 * loc + usize::from(digit_pairs[loc] % 10 == 0)
}
/// Split into components
pub(crate) fn as_parts(&self) -> (Sign, i64, &BigUint) {
(self.sign, self.scale, self.digits)
}
/// Take absolute value of the decimal (non-negative sign)
pub fn abs(&self) -> Self {
Self {
sign: self.sign * self.sign,
digits: self.digits,
scale: self.scale,
}
}
/// Create BigDecimal from this reference, rounding to precision and
/// with rounding-mode of the given context
///
///
pub fn round_with_context(&self, ctx: &Context) -> BigDecimal {
ctx.round_decimal_ref(*self)
}
/// Take square root of this number
pub fn sqrt_with_context(&self, ctx: &Context) -> Option<BigDecimal> {
use Sign::*;
let (sign, scale, uint) = self.as_parts();
match sign {
Minus => None,
NoSign => Some(Zero::zero()),
Plus => Some(arithmetic::sqrt::impl_sqrt(uint, scale, ctx)),
}
}
/// Take square root of absolute-value of the number
pub fn sqrt_abs_with_context(&self, ctx: &Context) -> BigDecimal {
use Sign::*;
let (_, scale, uint) = self.as_parts();
arithmetic::sqrt::impl_sqrt(uint, scale, ctx)
}
/// Take square root, copying sign of the initial decimal
pub fn sqrt_copysign_with_context(&self, ctx: &Context) -> BigDecimal {
use Sign::*;
let (sign, scale, uint) = self.as_parts();
let mut result = arithmetic::sqrt::impl_sqrt(uint, scale, ctx);
if sign == Minus {
result.int_val = result.int_val.neg();
}
result
}
/// Return if the referenced decimal is zero
pub fn is_zero(&self) -> bool {
self.digits.is_zero()
}
/// Clone this value into dest
pub fn clone_into(&self, dest: &mut BigDecimal) {
dest.int_val = num_bigint::BigInt::from_biguint(self.sign, self.digits.clone());
dest.scale = self.scale;
}
}
impl<'a> From<&'a BigDecimal> for BigDecimalRef<'a> {
fn from(n: &'a BigDecimal) -> Self {
let sign = n.int_val.sign();
let mag = n.int_val.magnitude();
Self {
sign: sign,
digits: mag,
scale: n.scale,
}
}
}
impl<'a> From<&'a BigInt> for BigDecimalRef<'a> {
fn from(n: &'a BigInt) -> Self {
Self {
sign: n.sign(),
digits: n.magnitude(),
scale: 0,
}
}
}
/// pair i64 'scale' with some other value
#[derive(Clone, Copy)]
struct WithScale<T> {
pub value: T,
pub scale: i64,
}
impl<T: fmt::Debug> fmt::Debug for WithScale<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "(scale={} {:?})", self.scale, self.value)
}
}
impl<T> From<(T, i64)> for WithScale<T> {
fn from(pair: (T, i64)) -> Self {
Self { value: pair.0, scale: pair.1 }
}
}
impl<'a> From<WithScale<&'a BigInt>> for BigDecimalRef<'a> {
fn from(obj: WithScale<&'a BigInt>) -> Self {
Self {
scale: obj.scale,
sign: obj.value.sign(),
digits: obj.value.magnitude(),
}
}
}
impl<'a> From<WithScale<&'a BigUint>> for BigDecimalRef<'a> {
fn from(obj: WithScale<&'a BigUint>) -> Self {
Self {
scale: obj.scale,
sign: Sign::Plus,
digits: obj.value,
}
}
}
impl<T: Zero> WithScale<&T> {
fn is_zero(&self) -> bool {
self.value.is_zero()
}
}
#[rustfmt::skip]
#[cfg(test)]
#[allow(non_snake_case)]
mod bigdecimal_tests {
use crate::{stdlib, BigDecimal, ToString, FromStr, TryFrom};
use num_traits::{ToPrimitive, FromPrimitive, Signed, Zero, One};
use num_bigint;
use paste::paste;
mod from_biguint {
use super::*;
use num_bigint::BigUint;
use num_bigint::Sign;
macro_rules! impl_case {
($name:ident; $i:literal; $scale:literal) => {
impl_case!($name; $i.into(); $scale; Plus);
};
($name:ident; $i:expr; $scale:literal; $sign:ident) => {
#[test]
fn $name() {
let i: BigUint = $i;
let d = BigDecimal::from_biguint(i.clone(), $scale);
assert_eq!(d.int_val.magnitude(), &i);
assert_eq!(d.scale, $scale);
assert_eq!(d.sign(), Sign::$sign);
}
};
}
impl_case!(case_0en3; BigUint::zero(); 3; NoSign);
impl_case!(case_30e2; 30u8; -2);
impl_case!(case_7446124798en5; 7446124798u128; 5);
}
#[test]
fn test_fractional_digit_count() {
// Zero value
let vals = BigDecimal::from(0);
assert_eq!(vals.fractional_digit_count(), 0);
assert_eq!(vals.to_ref().fractional_digit_count(), 0);
// Fractional part with trailing zeros
let vals = BigDecimal::from_str("1.0").unwrap();
assert_eq!(vals.fractional_digit_count(), 1);
assert_eq!(vals.to_ref().fractional_digit_count(), 1);
// Fractional part
let vals = BigDecimal::from_str("1.23").unwrap();
assert_eq!(vals.fractional_digit_count(), 2);
assert_eq!(vals.to_ref().fractional_digit_count(), 2);
// shifted to 'left' has negative scale
let vals = BigDecimal::from_str("123e5").unwrap();
assert_eq!(vals.fractional_digit_count(), -5);
assert_eq!(vals.to_ref().fractional_digit_count(), -5);
}
#[test]
fn test_sum() {
let vals = vec![
BigDecimal::from_f32(2.5).unwrap(),
BigDecimal::from_f32(0.3).unwrap(),
BigDecimal::from_f32(0.001).unwrap(),
];
let expected_sum = BigDecimal::from_str("2.801000011968426406383514404296875").unwrap();
let sum = vals.iter().sum::<BigDecimal>();
assert_eq!(expected_sum, sum);
}
#[test]
fn test_sum1() {
let vals = vec![
BigDecimal::from_f32(0.1).unwrap(),
BigDecimal::from_f32(0.2).unwrap(),
];
let expected_sum = BigDecimal::from_str("0.300000004470348358154296875").unwrap();
let sum = vals.iter().sum::<BigDecimal>();
assert_eq!(expected_sum, sum);
}
#[test]
fn test_to_i64() {
let vals = vec![
("12.34", 12),
("3.14", 3),
("50", 50),
("50000", 50000),
("0.001", 0),
// TODO: Is the desired behaviour to round?
//("0.56", 1),
];
for (s, ans) in vals {
let calculated = BigDecimal::from_str(s).unwrap().to_i64().unwrap();
assert_eq!(ans, calculated);
}
}
#[test]
fn test_to_i128() {
let vals = vec![
("170141183460469231731687303715884105727", 170141183460469231731687303715884105727),
("-170141183460469231731687303715884105728", -170141183460469231731687303715884105728),
("12.34", 12),
("3.14", 3),
("-123.90", -123),
("50", 50),
("0.001", 0),
];
for (s, ans) in vals {
let calculated = BigDecimal::from_str(s).unwrap().to_i128();
assert_eq!(Some(ans), calculated);
}
}
#[test]
fn test_to_u128() {
let vals = vec![
("340282366920938463463374607431768211455", 340282366920938463463374607431768211455),
("12.34", 12),
("3.14", 3),
("50", 50),
("0.001", 0),
];
for (s, ans) in vals {
let calculated = BigDecimal::from_str(s).unwrap().to_u128().unwrap();
assert_eq!(ans, calculated);
}
}
#[test]
fn test_from_i8() {
let vals = vec![
("0", 0),
("1", 1),
("12", 12),
("-13", -13),
("111", 111),
("-128", i8::MIN),
("127", i8::MAX),
];
for (s, n) in vals {
let expected = BigDecimal::from_str(s).unwrap();
let value = BigDecimal::from_i8(n).unwrap();
assert_eq!(expected, value);
}
}
#[test]
fn test_from_f32() {
let vals = vec![
("0.0", 0.0),
("1.0", 1.0),
("0.5", 0.5),
("0.25", 0.25),
("50.", 50.0),
("50000", 50000.),
("0.001000000047497451305389404296875", 0.001),
("12.340000152587890625", 12.34),
("0.15625", 0.15625),
("3.1415927410125732421875", stdlib::f32::consts::PI),
("31415.927734375", stdlib::f32::consts::PI * 10000.0),
("94247.78125", stdlib::f32::consts::PI * 30000.0),
("1048576", 1048576.),
];
for (s, n) in vals {
let expected = BigDecimal::from_str(s).unwrap();
let value = BigDecimal::from_f32(n).unwrap();
assert_eq!(expected, value);
}
}
#[test]
fn test_from_f64() {
let vals = vec![
("1.0", 1.0f64),
("0.5", 0.5),
("50", 50.),
("50000", 50000.),
("0.001000000000000000020816681711721685132943093776702880859375", 0.001),
("0.25", 0.25),
("12.339999999999999857891452847979962825775146484375", 12.34),
("0.15625", 5.0 * 0.03125),
("0.333333333333333314829616256247390992939472198486328125", 1.0 / 3.0),
("3.141592653589793115997963468544185161590576171875", stdlib::f64::consts::PI),
("31415.926535897931898944079875946044921875", stdlib::f64::consts::PI * 10000.0f64),
("94247.779607693795696832239627838134765625", stdlib::f64::consts::PI * 30000.0f64),
];
for (s, n) in vals {
let expected = BigDecimal::from_str(s).unwrap();
let value = BigDecimal::from_f64(n).unwrap();
assert_eq!(expected, value);
// assert_eq!(expected, n);
}
}
#[test]
fn test_nan_float() {
assert!(BigDecimal::try_from(f32::NAN).is_err());
assert!(BigDecimal::try_from(f64::NAN).is_err());
}
mod equals {
use super::*;
macro_rules! impl_case {
($name:ident: $input_a:literal == $input_b:literal) => {
#[test]
fn $name() {
let a: BigDecimal = $input_a.parse().unwrap();
let b: BigDecimal = $input_b.parse().unwrap();
assert_eq!(&a, &b);
assert_eq!(a.clone(), b.clone());
}
};
($name:ident: $input_a:literal != $input_b:literal) => {
#[test]
fn $name() {
let a: BigDecimal = $input_a.parse().unwrap();
let b: BigDecimal = $input_b.parse().unwrap();
assert_ne!(&a, &b);
assert_ne!(a.clone(), b.clone());
}
};
}
impl_case!(case_2: "2" == ".2e1");
impl_case!(case_0e1: "0e1" == "0.0");
impl_case!(case_n0: "-0" == "0.0");
impl_case!(case_n901d3: "-901.3" == "-0.901300e+3");
impl_case!(case_n0901300en3: "-901.3" == "-0901300e-3");
impl_case!(case_2123121e1231: "2123121e1231" == "212.3121e1235");
impl_case!(case_ne_2: "2" != ".2e2");
impl_case!(case_ne_1e45: "1e45" != "1e-900");
impl_case!(case_ne_1e900: "1e+900" != "1e-900");
}
#[test]
fn test_hash_equal() {
use stdlib::DefaultHasher;
use stdlib::hash::{Hash, Hasher};
fn hash<T>(obj: &T) -> u64
where T: Hash
{
let mut hasher = DefaultHasher::new();
obj.hash(&mut hasher);
hasher.finish()
}
let vals = vec![
("1.1234", "1.1234000"),
("1.12340000", "1.1234"),
("001.1234", "1.1234000"),
("001.1234", "0001.1234"),
("1.1234000000", "1.1234000"),
("1.12340", "1.1234000000"),
("-0901300e-3", "-901.3"),
("-0.901300e+3", "-901.3"),
("100", "100.00"),
("100.00", "100"),
("0.00", "0"),
("0.00", "0.000"),
("-0.00", "0.000"),
("0.00", "-0.000"),
];
for &(x,y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap();
let b = BigDecimal::from_str(y).unwrap();
assert_eq!(a, b);
assert_eq!(hash(&a), hash(&b), "hash({}) != hash({})", a, b);
}
}
#[test]
fn test_hash_not_equal() {
use stdlib::DefaultHasher;
use stdlib::hash::{Hash, Hasher};
fn hash<T>(obj: &T) -> u64
where T: Hash
{
let mut hasher = DefaultHasher::new();
obj.hash(&mut hasher);
hasher.finish()
}
let vals = vec![
("1.1234", "1.1234001"),
("10000", "10"),
("10", "10000"),
("10.0", "100"),
];
for &(x,y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap();
let b = BigDecimal::from_str(y).unwrap();
assert!(a != b, "{} == {}", a, b);
assert!(hash(&a) != hash(&b), "hash({}) == hash({})", a, b);
}
}
#[test]
fn test_hash_equal_scale() {
use stdlib::DefaultHasher;
use stdlib::hash::{Hash, Hasher};
fn hash<T>(obj: &T) -> u64
where T: Hash
{
let mut hasher = DefaultHasher::new();
obj.hash(&mut hasher);
hasher.finish()
}
let vals = vec![
("1234.5678", -2, "1200", 0),
("1234.5678", -2, "1200", -2),
("1234.5678", 0, "1234.1234", 0),
("1234.5678", -3, "1200", -3),
("-1234", -2, "-1200", 0),
];
for &(x,xs,y,ys) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap().with_scale(xs);
let b = BigDecimal::from_str(y).unwrap().with_scale(ys);
assert_eq!(a, b);
assert_eq!(hash(&a), hash(&b), "hash({}) != hash({})", a, b);
}
}
#[test]
fn test_with_prec() {
let vals = vec![
("7", 1, "7"),
("7", 2, "7.0"),
("895", 2, "900"),
("8934", 2, "8900"),
("8934", 1, "9000"),
("1.0001", 5, "1.0001"),
("1.0001", 4, "1"),
("1.00009", 6, "1.00009"),
("1.00009", 5, "1.0001"),
("1.00009", 4, "1.000"),
];
for &(x, p, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap().with_prec(p);
assert_eq!(a, BigDecimal::from_str(y).unwrap());
}
}
#[test]
fn test_digits() {
let vals = vec![
("0", 1),
("7", 1),
("10", 2),
("8934", 4),
];
for &(x, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap();
assert_eq!(a.digits(), y);
}
}
#[test]
fn test_get_rounding_term() {
use num_bigint::BigInt;
use super::get_rounding_term;
let vals = vec![
("0", 0),
("4", 0),
("5", 1),
("10", 0),
("15", 0),
("49", 0),
("50", 1),
("51", 1),
("8934", 1),
("9999", 1),
("10000", 0),
("50000", 1),
("99999", 1),
("100000", 0),
("100001", 0),
("10000000000", 0),
("9999999999999999999999999999999999999999", 1),
("10000000000000000000000000000000000000000", 0),
];
for &(x, y) in vals.iter() {
let a = BigInt::from_str(x).unwrap();
assert_eq!(get_rounding_term(&a), y, "{}", x);
}
}
#[test]
fn test_abs() {
let vals = vec![
("10", "10"),
("-10", "10"),
];
for &(x, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap().abs();
let b = BigDecimal::from_str(y).unwrap();
assert!(a == b, "{} == {}", a, b);
}
}
#[test]
fn test_count_decimal_digits() {
use num_bigint::BigInt;
use super::count_decimal_digits;
let vals = vec![
("10", 2),
("1", 1),
("9", 1),
("999", 3),
("1000", 4),
("9900", 4),
("9999", 4),
("10000", 5),
("99999", 5),
("100000", 6),
("999999", 6),
("1000000", 7),
("9999999", 7),
("999999999999", 12),
("999999999999999999999999", 24),
("999999999999999999999999999999999999999999999999", 48),
("999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", 96),
("199999911199999999999999999999999999999999999999999999999999999999999999999999999999999999999000", 96),
("999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991", 192),
("199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", 192),
("-1", 1),
("-6", 1),
("-10", 2),
("-999999999999999999999999", 24),
];
for &(x, y) in vals.iter() {
let a = BigInt::from_str(x).unwrap();
let b = count_decimal_digits(&a);
assert_eq!(b, y);
}
}
#[test]
fn test_half() {
let vals = vec![
("100", "50."),
("2", "1"),
(".2", ".1"),
("42", "21"),
("3", "1.5"),
("99", "49.5"),
("3.141592653", "1.5707963265"),
("3.1415926536", "1.5707963268"),
];
for &(x, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap().half();
let b = BigDecimal::from_str(y).unwrap();
assert_eq!(a, b);
assert_eq!(a.scale, b.scale);
}
}
#[test]
fn test_round() {
let test_cases = vec![
("1.45", 1, "1.4"),
("1.444445", 1, "1.4"),
("1.44", 1, "1.4"),
("0.444", 2, "0.44"),
("4.5", 0, "4"),
("4.05", 1, "4.0"),
("4.050", 1, "4.0"),
("4.15", 1, "4.2"),
("0.0045", 2, "0.00"),
("5.5", -1, "10"),
("-1.555", 2, "-1.56"),
("-1.555", 99, "-1.555"),
("5.5", 0, "6"),
("-1", -1, "0"),
("5", -1, "0"),
("44", -1, "40"),
("44", -99, "0"),
("44", 99, "44"),
("1.4499999999", -1, "0"),
("1.4499999999", 0, "1"),
("1.4499999999", 1, "1.4"),
("1.4499999999", 2, "1.45"),
("1.4499999999", 3, "1.450"),
("1.4499999999", 4, "1.4500"),
("1.4499999999", 10, "1.4499999999"),
("1.4499999999", 15, "1.449999999900000"),
("-1.4499999999", 1, "-1.4"),
("1.449999999", 1, "1.4"),
("-9999.444455556666", 10, "-9999.4444555567"),
("-12345678987654321.123456789", 8, "-12345678987654321.12345679"),
("0.33333333333333333333333333333333333333333333333333333333333333333333333333333333333333", 0, "0"),
("0.1165085714285714285714285714285714285714", 0, "0"),
("0.1165085714285714285714285714285714285714", 2, "0.12"),
("0.1165085714285714285714285714285714285714", 5, "0.11651"),
("0.1165085714285714285714285714285714285714", 8, "0.11650857"),
("-1.5", 0, "-2"),
("-1.2", 0, "-1"),
("-0.68", 0, "-1"),
("-0.5", 0, "0"),
("-0.49", 0, "0"),
];
for &(x, digits, y) in test_cases.iter() {
let a = BigDecimal::from_str(x).unwrap();
let b = BigDecimal::from_str(y).unwrap();
let rounded = a.round(digits);
assert_eq!(rounded, b);
}
}
#[test]
fn round_large_number() {
use super::BigDecimal;
let z = BigDecimal::from_str("3.4613133327063255443352353815722045816611958409944513040035462804475524").unwrap();
let expected = BigDecimal::from_str("11.9806899871705702711783103817684242408972124568942276285200973527647213").unwrap();
let zsq = &z*&z;
let zsq = zsq.round(70);
debug_assert_eq!(zsq, expected);
}
#[test]
fn test_is_integer() {
let true_vals = vec![
"100",
"100.00",
"1724e4",
"31.47e8",
"-31.47e8",
"-0.0",
];
let false_vals = vec![
"100.1",
"0.001",
"3147e-3",
"3147e-8",
"-0.01",
"-1e-3",
];
for s in true_vals {
let d = BigDecimal::from_str(s).unwrap();
assert!(d.is_integer());
}
for s in false_vals {
let d = BigDecimal::from_str(s).unwrap();
assert!(!d.is_integer());
}
}
#[test]
fn test_inverse() {
let vals = vec![
("100", "0.01"),
("2", "0.5"),
(".2", "5"),
("3.141592653", "0.3183098862435492205742690218851870990799646487459493049686604293188738877535183744268834079171116523"),
];
for &(x, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap();
let i = a.inverse();
let b = BigDecimal::from_str(y).unwrap();
assert_eq!(i, b);
assert_eq!(BigDecimal::from(1)/&a, b);
assert_eq!(i.inverse(), a);
// assert_eq!(a.scale, b.scale, "scale mismatch ({} != {}", a, b);
}
}
mod double {
use super::*;
include!("lib.tests.double.rs");
}
#[test]
fn test_square() {
let vals = vec![
("1.00", "1.00"),
("1.5", "2.25"),
("1.50", "2.2500"),
("5", "25"),
("5.0", "25.00"),
("-5.0", "25.00"),
("5.5", "30.25"),
("0.80", "0.6400"),
("0.01234", "0.0001522756"),
("3.1415926", "9.86960406437476"),
];
for &(x, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap().square();
let b = BigDecimal::from_str(y).unwrap();
assert_eq!(a, b);
assert_eq!(a.scale, b.scale);
}
}
#[test]
fn test_cube() {
let vals = vec![
("1.00", "1.00"),
("1.50", "3.375000"),
("5", "125"),
("5.0", "125.000"),
("5.00", "125.000000"),
("-5", "-125"),
("-5.0", "-125.000"),
("2.01", "8.120601"),
("5.5", "166.375"),
("0.01234", "0.000001879080904"),
("3.1415926", "31.006275093569669642776"),
];
for &(x, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap().cube();
let b = BigDecimal::from_str(y).unwrap();
assert_eq!(a, b);
assert_eq!(a.scale, b.scale);
}
}
#[test]
fn test_exp() {
let vals = vec![
("0", "1"),
("1", "2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427"),
("1.01", "2.745601015016916493989776316660387624073750819595962291667398087987297168243899027802501018008905180"),
("0.5", "1.648721270700128146848650787814163571653776100710148011575079311640661021194215608632776520056366643"),
("-1", "0.3678794411714423215955237701614608674458111310317678345078368016974614957448998033571472743459196437"),
("-0.01", "0.9900498337491680535739059771800365577720790812538374668838787452931477271687452950182155307793838110"),
("-10.04", "0.00004361977305405268676261569570537884674661515701779752139657120453194647205771372804663141467275928595"),
//("-1000.04", "4.876927702336787390535723208392195312680380995235400234563172353460484039061383367037381490416091595E-435"),
("-20.07", "1.921806899438469499721914055500607234723811054459447828795824348465763824284589956630853464778332349E-9"),
("10", "22026.46579480671651695790064528424436635351261855678107423542635522520281857079257519912096816452590"),
("20", "485165195.4097902779691068305415405586846389889448472543536108003159779961427097401659798506527473494"),
//("777.7", "5.634022488451236612534495413455282583175841288248965283178668787259870456538271615076138061788051442E+337"),
];
for &(x, y) in vals.iter() {
let a = BigDecimal::from_str(x).unwrap().exp();
let b = BigDecimal::from_str(y).unwrap();
assert_eq!(a, b);
}
}
mod to_plain_string {
use super::*;
macro_rules! impl_test {
($name:ident: $input:literal => $expected:literal) => {
#[test]
fn $name() {
let n: BigDecimal = $input.parse().unwrap();
let s = n.to_plain_string();
assert_eq!(&s, $expected);
}
};
}
impl_test!(case_zero: "0" => "0");
impl_test!(case_1en18: "1e-18" => "0.000000000000000001");
impl_test!(case_n72e4: "-72e4" => "-720000");
impl_test!(case_95517338e30: "95517338e30" => "95517338000000000000000000000000000000");
impl_test!(case_29478en30: "29478e-30" => "0.000000000000000000000000029478");
impl_test!(case_30740d4897: "30740.4897" => "30740.4897");
}
#[test]
fn test_signed() {
assert!(!BigDecimal::zero().is_positive());
assert!(!BigDecimal::one().is_negative());
assert!(BigDecimal::one().is_positive());
assert!((-BigDecimal::one()).is_negative());
assert!((-BigDecimal::one()).abs().is_positive());
}
mod normalize {
use super::*;
macro_rules! impl_case {
( $name:ident: ($i:literal, $s:literal) => ($e_int_val:literal, $e_scale:literal) ) => {
#[test]
fn $name() {
let d = BigDecimal::new($i.into(), $s);
let n = d.normalized();
assert_eq!(n.int_val, $e_int_val.into());
assert_eq!(n.scale, $e_scale);
}
}
}
impl_case!(case_0e3: (0, -3) => (0, 0));
impl_case!(case_0en50: (0, 50) => (0, 0));
impl_case!(case_10en2: (10, 2) => (1, 1));
impl_case!(case_11en2: (11, 2) => (11, 2));
impl_case!(case_132400en4: (132400, 4) => (1324, 2));
impl_case!(case_1_900_000en3: (1_900_000, 3) => (19, -2));
impl_case!(case_834700e4: (834700, -4) => (8347, -6));
impl_case!(case_n834700e4: (-9900, 2) => (-99, 0));
}
#[test]
fn test_from_i128() {
let value = BigDecimal::from_i128(-368934881474191032320).unwrap();
let expected = BigDecimal::from_str("-368934881474191032320").unwrap();
assert_eq!(value, expected);
}
#[test]
fn test_from_u128() {
let value = BigDecimal::from_u128(668934881474191032320).unwrap();
let expected = BigDecimal::from_str("668934881474191032320").unwrap();
assert_eq!(value, expected);
}
#[test]
fn test_parse_roundtrip() {
let vals = vec![
"1.0",
"0.5",
"50",
"50000",
"0.001000000000000000020816681711721685132943093776702880859375",
"0.25",
"12.339999999999999857891452847979962825775146484375",
"0.15625",
"0.333333333333333314829616256247390992939472198486328125",
"3.141592653589793115997963468544185161590576171875",
"31415.926535897931898944079875946044921875",
"94247.779607693795696832239627838134765625",
"1331.107",
"1.0",
"2e1",
"0.00123",
"-123",
"-1230",
"12.3",
"123e-1",
"1.23e+1",
"1.23E+3",
"1.23E-8",
"-1.23E-10",
"123_",
"31_862_140.830_686_979",
"-1_1.2_2",
"999.521_939",
"679.35_84_03E-2",
"271576662.__E4",
// Large decimals with small text representations
"1E10000",
"1E-10000",
"1.129387461293874682630000000487984723987459E10000",
"11293874612938746826340000000087984723987459E10000",
];
for s in vals {
let expected = BigDecimal::from_str(s).unwrap();
let display = format!("{}", expected);
let parsed = BigDecimal::from_str(&display).unwrap();
assert_eq!(expected, parsed, "[{}] didn't round trip through [{}]", s, display);
}
}
}
#[cfg(test)]
#[allow(non_snake_case)]
mod test_with_scale_round {
use super::*;
use paste::paste;
include!("lib.tests.with_scale_round.rs");
}
#[cfg(all(test, property_tests))]
extern crate proptest;
#[cfg(all(test, property_tests))]
mod proptests {
use super::*;
use paste::paste;
use proptest::*;
include!("lib.tests.property-tests.rs");
}