1use crate::error::IpNetworkError;
2use crate::parse::{cidr_parts, parse_prefix};
3use std::{convert::TryFrom, fmt, net::Ipv4Addr, str::FromStr};
4
5const IPV4_BITS: u8 = 32;
6
7#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
9pub struct Ipv4Network {
10 addr: Ipv4Addr,
11 prefix: u8,
12}
13
14#[cfg(feature = "serde")]
15impl<'de> serde::Deserialize<'de> for Ipv4Network {
16 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
17 where
18 D: serde::Deserializer<'de>,
19 {
20 let s = <String>::deserialize(deserializer)?;
21 Ipv4Network::from_str(&s).map_err(serde::de::Error::custom)
22 }
23}
24
25#[cfg(feature = "serde")]
26impl serde::Serialize for Ipv4Network {
27 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
28 where
29 S: serde::Serializer,
30 {
31 serializer.collect_str(self)
32 }
33}
34
35#[cfg(feature = "schemars")]
36impl schemars::JsonSchema for Ipv4Network {
37 fn schema_name() -> String {
38 "Ipv4Network".to_string()
39 }
40
41 fn json_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
42 schemars::schema::SchemaObject {
43 instance_type: Some(schemars::schema::InstanceType::String.into()),
44 string: Some(Box::new(schemars::schema::StringValidation {
45 pattern: Some(
46 concat!(
47 r#"^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}"#,
48 r#"(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"#,
49 r#"\/(3[0-2]|[0-2]?[0-9])$"#,
50 )
51 .to_string(),
52 ),
53 ..Default::default()
54 })),
55 extensions: [("x-rust-type".to_string(), "ipnetwork::Ipv4Network".into())]
56 .iter()
57 .cloned()
58 .collect(),
59 ..Default::default()
60 }
61 .into()
62 }
63}
64
65impl Ipv4Network {
66 pub const fn new(addr: Ipv4Addr, prefix: u8) -> Result<Ipv4Network, IpNetworkError> {
70 match Ipv4Network::new_checked(addr, prefix) {
71 Some(a) => Ok(a),
72 None => Err(IpNetworkError::InvalidPrefix),
73 }
74 }
75
76 pub const fn new_checked(addr: Ipv4Addr, prefix: u8) -> Option<Ipv4Network> {
109 if prefix > IPV4_BITS {
110 None
111 } else {
112 Some(Ipv4Network { addr, prefix })
113 }
114 }
115
116 pub fn with_netmask(
120 netaddr: Ipv4Addr,
121 netmask: Ipv4Addr,
122 ) -> Result<Ipv4Network, IpNetworkError> {
123 let prefix = ipv4_mask_to_prefix(netmask)?;
124 let net = Self {
125 addr: netaddr,
126 prefix,
127 };
128 Ok(net)
129 }
130
131 pub fn iter(self) -> Ipv4NetworkIterator {
135 let start = u32::from(self.network());
136 let end = start + (self.size() - 1);
137 Ipv4NetworkIterator {
138 next: Some(start),
139 end,
140 }
141 }
142
143 pub fn ip(self) -> Ipv4Addr {
144 self.addr
145 }
146
147 pub fn prefix(self) -> u8 {
148 self.prefix
149 }
150
151 pub fn is_subnet_of(self, other: Ipv4Network) -> bool {
153 other.ip() <= self.ip() && other.broadcast() >= self.broadcast()
154 }
155
156 pub fn is_supernet_of(self, other: Ipv4Network) -> bool {
158 other.is_subnet_of(self)
159 }
160
161 pub fn overlaps(self, other: Ipv4Network) -> bool {
163 other.contains(self.ip())
164 || other.contains(self.broadcast())
165 || self.contains(other.ip())
166 || self.contains(other.broadcast())
167 }
168
169 pub fn mask(&self) -> Ipv4Addr {
184 debug_assert!(self.prefix <= 32);
185 if self.prefix == 0 {
186 return Ipv4Addr::new(0, 0, 0, 0);
187 }
188 let mask = u32::MAX << (IPV4_BITS - self.prefix);
189 Ipv4Addr::from(mask)
190 }
191
192 pub fn network(&self) -> Ipv4Addr {
205 let mask = u32::from(self.mask());
206 let ip = u32::from(self.addr) & mask;
207 Ipv4Addr::from(ip)
208 }
209
210 pub fn broadcast(&self) -> Ipv4Addr {
223 let mask = u32::from(self.mask());
224 let broadcast = u32::from(self.addr) | !mask;
225 Ipv4Addr::from(broadcast)
226 }
227
228 #[inline]
241 pub fn contains(&self, ip: Ipv4Addr) -> bool {
242 debug_assert!(self.prefix <= IPV4_BITS);
243
244 let mask = !(0xffff_ffff_u64 >> self.prefix) as u32;
245 let net = u32::from(self.addr) & mask;
246 (u32::from(ip) & mask) == net
247 }
248
249 pub fn size(self) -> u32 {
264 debug_assert!(self.prefix <= 32);
265 if self.prefix == 0 {
266 return u32::MAX;
267 }
268 1 << (IPV4_BITS - self.prefix)
269 }
270
271 pub fn nth(self, n: u32) -> Option<Ipv4Addr> {
289 if n < self.size() {
290 let net = u32::from(self.network());
291 Some(Ipv4Addr::from(net + n))
292 } else {
293 None
294 }
295 }
296}
297
298impl fmt::Display for Ipv4Network {
299 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
300 write!(fmt, "{}/{}", self.ip(), self.prefix())
301 }
302}
303
304impl FromStr for Ipv4Network {
318 type Err = IpNetworkError;
319 fn from_str(s: &str) -> Result<Self, Self::Err> {
320 let (addr_str, prefix_str) = cidr_parts(s)?;
321 let addr = Ipv4Addr::from_str(addr_str)?;
322 let prefix = match prefix_str {
323 Some(v) => {
324 if let Ok(netmask) = Ipv4Addr::from_str(v) {
325 ipv4_mask_to_prefix(netmask)?
326 } else {
327 parse_prefix(v, IPV4_BITS)?
328 }
329 }
330 None => IPV4_BITS,
331 };
332 Ipv4Network::new(addr, prefix)
333 }
334}
335
336impl TryFrom<&str> for Ipv4Network {
337 type Error = IpNetworkError;
338
339 fn try_from(s: &str) -> Result<Self, Self::Error> {
340 Ipv4Network::from_str(s)
341 }
342}
343
344impl From<Ipv4Addr> for Ipv4Network {
345 fn from(a: Ipv4Addr) -> Ipv4Network {
346 Ipv4Network {
347 addr: a,
348 prefix: 32,
349 }
350 }
351}
352
353#[derive(Clone, Debug)]
354pub struct Ipv4NetworkIterator {
355 next: Option<u32>,
356 end: u32,
357}
358
359impl Iterator for Ipv4NetworkIterator {
360 type Item = Ipv4Addr;
361
362 fn next(&mut self) -> Option<Ipv4Addr> {
363 let next = self.next?;
364 self.next = if next == self.end {
365 None
366 } else {
367 Some(next + 1)
368 };
369 Some(next.into())
370 }
371}
372
373impl IntoIterator for &'_ Ipv4Network {
374 type IntoIter = Ipv4NetworkIterator;
375 type Item = Ipv4Addr;
376 fn into_iter(self) -> Ipv4NetworkIterator {
377 self.iter()
378 }
379}
380
381pub fn ipv4_mask_to_prefix(mask: Ipv4Addr) -> Result<u8, IpNetworkError> {
385 let mask = u32::from(mask);
386
387 let prefix = (!mask).leading_zeros() as u8;
388 if (u64::from(mask) << prefix) & 0xffff_ffff != 0 {
389 Err(IpNetworkError::InvalidPrefix)
390 } else {
391 Ok(prefix)
392 }
393}
394
395#[cfg(test)]
396mod test {
397 use super::*;
398 use std::collections::HashMap;
399 use std::mem;
400 use std::net::Ipv4Addr;
401
402 #[test]
403 fn create_v4() {
404 let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
405 assert_eq!(cidr.prefix(), 24);
406 }
407
408 #[test]
409 fn create_v4_invalid_prefix() {
410 let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33);
411 assert!(net.is_err());
412 }
413
414 #[test]
415 fn create_checked_v4() {
416 let cidr = Ipv4Network::new_checked(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
417 assert_eq!(cidr.prefix(), 24);
418 }
419
420 #[test]
421 #[should_panic]
422 fn try_create_invalid_checked_v4() {
423 Ipv4Network::new_checked(Ipv4Addr::new(0, 0, 0, 0), 33).unwrap();
424 }
425
426 #[test]
427 fn parse_v4_24bit() {
428 let cidr: Ipv4Network = "127.1.0.0/24".parse().unwrap();
429 assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0));
430 assert_eq!(cidr.prefix(), 24);
431 }
432
433 #[test]
434 fn parse_v4_32bit() {
435 let cidr: Ipv4Network = "127.0.0.0/32".parse().unwrap();
436 assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
437 assert_eq!(cidr.prefix(), 32);
438 }
439
440 #[test]
441 fn parse_v4_noprefix() {
442 let cidr: Ipv4Network = "127.0.0.0".parse().unwrap();
443 assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
444 assert_eq!(cidr.prefix(), 32);
445 }
446
447 #[test]
448 fn parse_v4_fail_addr() {
449 let cidr: Option<Ipv4Network> = "10.a.b/8".parse().ok();
450 assert_eq!(None, cidr);
451 }
452
453 #[test]
454 fn parse_v4_fail_addr2() {
455 let cidr: Option<Ipv4Network> = "10.1.1.1.0/8".parse().ok();
456 assert_eq!(None, cidr);
457 }
458
459 #[test]
460 fn parse_v4_fail_addr3() {
461 let cidr: Option<Ipv4Network> = "256/8".parse().ok();
462 assert_eq!(None, cidr);
463 }
464
465 #[test]
466 fn parse_v4_non_zero_host_bits() {
467 let cidr: Ipv4Network = "10.1.1.1/24".parse().unwrap();
468 assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1));
469 assert_eq!(cidr.prefix(), 24);
470 }
471
472 #[test]
473 fn parse_v4_fail_prefix() {
474 let cidr: Option<Ipv4Network> = "0/39".parse().ok();
475 assert_eq!(None, cidr);
476 }
477
478 #[test]
479 fn parse_v4_fail_two_slashes() {
480 let cidr: Option<Ipv4Network> = "10.1.1.1/24/".parse().ok();
481 assert_eq!(None, cidr);
482 }
483
484 #[test]
485 fn nth_v4() {
486 let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap();
487 assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0));
488 assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1));
489 assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255));
490 assert!(net.nth(256).is_none());
491 }
492
493 #[test]
494 fn nth_v4_fail() {
495 let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap();
496 assert!(net.nth(1).is_none());
497 }
498
499 #[test]
500 fn hash_eq_compatibility_v4() {
501 let mut map = HashMap::new();
502 let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
503 map.insert(net, 137);
504 assert_eq!(137, map[&net]);
505 }
506
507 #[test]
508 #[allow(dropping_copy_types)]
509 fn copy_compatibility_v4() {
510 let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
511 mem::drop(net);
512 assert_eq!(16, net.prefix());
513 }
514
515 #[test]
516 fn mask_v4() {
517 let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap();
518 let mask = cidr.mask();
519 assert_eq!(mask, Ipv4Addr::new(255, 255, 255, 248));
520 }
521
522 #[test]
523 fn network_v4() {
524 let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
525 let net = cidr.network();
526 assert_eq!(net, Ipv4Addr::new(10, 10, 0, 0));
527 }
528
529 #[test]
530 fn broadcast_v4() {
531 let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
532 let bcast = cidr.broadcast();
533 assert_eq!(bcast, Ipv4Addr::new(10, 10, 1, 255));
534 }
535
536 #[test]
537 fn contains_v4() {
538 let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap();
539 let ip = Ipv4Addr::new(74, 125, 227, 4);
540 assert!(cidr.contains(ip));
541 }
542
543 #[test]
544 fn not_contains_v4() {
545 let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap();
546 let ip = Ipv4Addr::new(10, 1, 0, 1);
547 assert!(!cidr.contains(ip));
548 }
549
550 #[test]
551 fn iterator_v4() {
552 let cidr: Ipv4Network = "192.168.122.0/30".parse().unwrap();
553 let mut iter = cidr.iter();
554 assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap());
555 assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap());
556 assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap());
557 assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap());
558 assert_eq!(None, iter.next());
559 }
560
561 #[test]
564 #[ignore]
565 fn iterator_v4_huge() {
566 let cidr: Ipv4Network = "0/0".parse().unwrap();
567 let mut iter = cidr.iter();
568 for i in 0..(u32::MAX as u64 + 1) {
569 assert_eq!(i as u32, u32::from(iter.next().unwrap()));
570 }
571 assert_eq!(None, iter.next());
572 }
573
574 #[test]
575 fn v4_mask_to_prefix() {
576 let mask = Ipv4Addr::new(255, 255, 255, 128);
577 let prefix = ipv4_mask_to_prefix(mask).unwrap();
578 assert_eq!(prefix, 25);
579 }
580
581 #[test]
583 fn parse_netmask() {
584 let from_netmask: Ipv4Network = "192.168.1.0/255.255.255.0".parse().unwrap();
585 let from_prefix: Ipv4Network = "192.168.1.0/24".parse().unwrap();
586 assert_eq!(from_netmask, from_prefix);
587 }
588
589 #[test]
590 fn parse_netmask_broken_v4() {
591 assert_eq!(
592 "192.168.1.0/255.0.255.0".parse::<Ipv4Network>(),
593 Err(IpNetworkError::InvalidPrefix)
594 );
595 }
596
597 #[test]
598 fn invalid_v4_mask_to_prefix() {
599 let mask = Ipv4Addr::new(255, 0, 255, 0);
600 let prefix = ipv4_mask_to_prefix(mask);
601 assert!(prefix.is_err());
602 }
603
604 #[test]
605 fn ipv4network_with_netmask() {
606 {
607 let addr = Ipv4Addr::new(127, 0, 0, 1);
609 let mask = Ipv4Addr::new(255, 0, 0, 0);
610 let net = Ipv4Network::with_netmask(addr, mask).unwrap();
611 let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 8).unwrap();
612 assert_eq!(net, expected);
613 }
614 {
615 let addr = Ipv4Addr::new(127, 0, 0, 1);
617 let mask = Ipv4Addr::new(255, 0, 255, 0);
618 Ipv4Network::with_netmask(addr, mask).unwrap_err();
619 }
620 }
621
622 #[test]
623 fn ipv4network_from_ipv4addr() {
624 let net = Ipv4Network::from(Ipv4Addr::new(127, 0, 0, 1));
625 let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 32).unwrap();
626 assert_eq!(net, expected);
627 }
628
629 #[test]
630 fn test_send() {
631 fn assert_send<T: Send>() {}
632 assert_send::<Ipv4Network>();
633 }
634
635 #[test]
636 fn test_sync() {
637 fn assert_sync<T: Sync>() {}
638 assert_sync::<Ipv4Network>();
639 }
640
641 #[test]
643 fn test_is_subnet_of() {
644 let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();
645
646 test_cases.insert(
647 (
648 "10.0.0.0/30".parse().unwrap(),
649 "10.0.1.0/24".parse().unwrap(),
650 ),
651 false,
652 );
653 test_cases.insert(
654 (
655 "10.0.0.0/30".parse().unwrap(),
656 "10.0.0.0/24".parse().unwrap(),
657 ),
658 true,
659 );
660 test_cases.insert(
661 (
662 "10.0.0.0/30".parse().unwrap(),
663 "10.0.1.0/24".parse().unwrap(),
664 ),
665 false,
666 );
667 test_cases.insert(
668 (
669 "10.0.1.0/24".parse().unwrap(),
670 "10.0.0.0/30".parse().unwrap(),
671 ),
672 false,
673 );
674
675 for (key, val) in test_cases.iter() {
676 let (src, dest) = (key.0, key.1);
677 assert_eq!(
678 src.is_subnet_of(dest),
679 *val,
680 "testing with {src} and {dest}"
681 );
682 }
683 }
684
685 #[test]
686 fn test_is_supernet_of() {
687 let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();
688
689 test_cases.insert(
690 (
691 "10.0.0.0/30".parse().unwrap(),
692 "10.0.1.0/24".parse().unwrap(),
693 ),
694 false,
695 );
696 test_cases.insert(
697 (
698 "10.0.0.0/30".parse().unwrap(),
699 "10.0.0.0/24".parse().unwrap(),
700 ),
701 false,
702 );
703 test_cases.insert(
704 (
705 "10.0.0.0/30".parse().unwrap(),
706 "10.0.1.0/24".parse().unwrap(),
707 ),
708 false,
709 );
710 test_cases.insert(
711 (
712 "10.0.0.0/24".parse().unwrap(),
713 "10.0.0.0/30".parse().unwrap(),
714 ),
715 true,
716 );
717
718 for (key, val) in test_cases.iter() {
719 let (src, dest) = (key.0, key.1);
720 assert_eq!(
721 src.is_supernet_of(dest),
722 *val,
723 "testing with {src} and {dest}"
724 );
725 }
726 }
727
728 #[test]
729 fn test_overlaps() {
730 let other: Ipv4Network = "1.2.3.0/30".parse().unwrap();
731 let other2: Ipv4Network = "1.2.2.0/24".parse().unwrap();
732 let other3: Ipv4Network = "1.2.2.64/26".parse().unwrap();
733
734 let skynet: Ipv4Network = "1.2.3.0/24".parse().unwrap();
735 assert!(skynet.overlaps(other));
736 assert!(!skynet.overlaps(other2));
737 assert!(other2.overlaps(other3));
738 }
739
740 #[test]
741 fn edges() {
742 let low: Ipv4Network = "0.0.0.0/24".parse().unwrap();
743 let low_addrs: Vec<Ipv4Addr> = low.iter().collect();
744 assert_eq!(256, low_addrs.len());
745 assert_eq!("0.0.0.0".parse::<Ipv4Addr>().unwrap(), low_addrs[0]);
746 assert_eq!("0.0.0.255".parse::<Ipv4Addr>().unwrap(), low_addrs[255]);
747
748 let high: Ipv4Network = "255.255.255.0/24".parse().unwrap();
749 let high_addrs: Vec<Ipv4Addr> = high.iter().collect();
750 assert_eq!(256, high_addrs.len());
751 assert_eq!("255.255.255.0".parse::<Ipv4Addr>().unwrap(), high_addrs[0]);
752 assert_eq!(
753 "255.255.255.255".parse::<Ipv4Addr>().unwrap(),
754 high_addrs[255]
755 );
756 }
757}