ipnetwork/
ipv4.rs

1use crate::error::IpNetworkError;
2use crate::parse::{cidr_parts, parse_prefix};
3use std::{convert::TryFrom, fmt, net::Ipv4Addr, str::FromStr};
4
5const IPV4_BITS: u8 = 32;
6
7/// Represents a network range where the IP addresses are of v4
8#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
9pub struct Ipv4Network {
10    addr: Ipv4Addr,
11    prefix: u8,
12}
13
14#[cfg(feature = "serde")]
15impl<'de> serde::Deserialize<'de> for Ipv4Network {
16    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
17    where
18        D: serde::Deserializer<'de>,
19    {
20        let s = <String>::deserialize(deserializer)?;
21        Ipv4Network::from_str(&s).map_err(serde::de::Error::custom)
22    }
23}
24
25#[cfg(feature = "serde")]
26impl serde::Serialize for Ipv4Network {
27    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
28    where
29        S: serde::Serializer,
30    {
31        serializer.collect_str(self)
32    }
33}
34
35#[cfg(feature = "schemars")]
36impl schemars::JsonSchema for Ipv4Network {
37    fn schema_name() -> String {
38        "Ipv4Network".to_string()
39    }
40
41    fn json_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
42        schemars::schema::SchemaObject {
43            instance_type: Some(schemars::schema::InstanceType::String.into()),
44            string: Some(Box::new(schemars::schema::StringValidation {
45                pattern: Some(
46                    concat!(
47                        r#"^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}"#,
48                        r#"(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"#,
49                        r#"\/(3[0-2]|[0-2]?[0-9])$"#,
50                    )
51                    .to_string(),
52                ),
53                ..Default::default()
54            })),
55            extensions: [("x-rust-type".to_string(), "ipnetwork::Ipv4Network".into())]
56                .iter()
57                .cloned()
58                .collect(),
59            ..Default::default()
60        }
61        .into()
62    }
63}
64
65impl Ipv4Network {
66    /// Constructs a new `Ipv4Network` from any `Ipv4Addr` and a prefix denoting the network size.
67    ///
68    /// If the prefix is larger than 32 this will return an `IpNetworkError::InvalidPrefix`.
69    pub const fn new(addr: Ipv4Addr, prefix: u8) -> Result<Ipv4Network, IpNetworkError> {
70        match Ipv4Network::new_checked(addr, prefix) {
71            Some(a) => Ok(a),
72            None => Err(IpNetworkError::InvalidPrefix),
73        }
74    }
75
76    /// Constructs a new `Ipv4Network` from any `Ipv4Addr`, and a prefix denoting the network size.
77    ///
78    /// If the prefix is larger than 32 this will return `None`. This is useful in const contexts,
79    /// where [`Option::unwrap`] may be called to trigger a compile-time error in case the prefix
80    /// is an unexpected value.
81    ///
82    /// # Examples
83    ///
84    /// ```
85    /// use std::net::Ipv4Addr;
86    /// use ipnetwork::Ipv4Network;
87    ///
88    /// const PREFIX: u8 = 24;
89    /// const ADDR: Ipv4Addr = Ipv4Addr::new(192, 168, 1, 1);
90    ///
91    /// // Okay!
92    /// const NETWORK: Ipv4Network = Ipv4Network::new_checked(ADDR, PREFIX).unwrap();
93    /// assert_eq!(NETWORK.prefix(), PREFIX);
94    /// ```
95    ///
96    /// ```should_panic
97    /// use std::net::Ipv4Addr;
98    /// use ipnetwork::Ipv4Network;
99    ///
100    /// // Prefix is greater than 32.
101    /// const PREFIX: u8 = 32 + 1;
102    /// const ADDR: Ipv4Addr = Ipv4Addr::new(192, 168, 1, 1);
103    ///
104    /// // This fails!
105    /// const NETWORK: Option<Ipv4Network> = Ipv4Network::new_checked(ADDR, PREFIX);
106    /// assert_eq!(NETWORK.unwrap().prefix(), PREFIX);
107    /// ```
108    pub const fn new_checked(addr: Ipv4Addr, prefix: u8) -> Option<Ipv4Network> {
109        if prefix > IPV4_BITS {
110            None
111        } else {
112            Some(Ipv4Network { addr, prefix })
113        }
114    }
115
116    /// Constructs a new `Ipv4Network` from a network address and a network mask.
117    ///
118    /// If the netmask is not valid this will return an `IpNetworkError::InvalidPrefix`.
119    pub fn with_netmask(
120        netaddr: Ipv4Addr,
121        netmask: Ipv4Addr,
122    ) -> Result<Ipv4Network, IpNetworkError> {
123        let prefix = ipv4_mask_to_prefix(netmask)?;
124        let net = Self {
125            addr: netaddr,
126            prefix,
127        };
128        Ok(net)
129    }
130
131    /// Returns an iterator over `Ipv4Network`. Each call to `next` will return the next
132    /// `Ipv4Addr` in the given network. `None` will be returned when there are no more
133    /// addresses.
134    pub fn iter(self) -> Ipv4NetworkIterator {
135        let start = u32::from(self.network());
136        let end = start + (self.size() - 1);
137        Ipv4NetworkIterator {
138            next: Some(start),
139            end,
140        }
141    }
142
143    pub fn ip(self) -> Ipv4Addr {
144        self.addr
145    }
146
147    pub fn prefix(self) -> u8 {
148        self.prefix
149    }
150
151    /// Checks if the given `Ipv4Network` is a subnet of the other.
152    pub fn is_subnet_of(self, other: Ipv4Network) -> bool {
153        other.ip() <= self.ip() && other.broadcast() >= self.broadcast()
154    }
155
156    /// Checks if the given `Ipv4Network` is a supernet of the other.
157    pub fn is_supernet_of(self, other: Ipv4Network) -> bool {
158        other.is_subnet_of(self)
159    }
160
161    /// Checks if the given `Ipv4Network` is partly contained in other.
162    pub fn overlaps(self, other: Ipv4Network) -> bool {
163        other.contains(self.ip())
164            || other.contains(self.broadcast())
165            || self.contains(other.ip())
166            || self.contains(other.broadcast())
167    }
168
169    /// Returns the mask for this `Ipv4Network`.
170    /// That means the `prefix` most significant bits will be 1 and the rest 0
171    ///
172    /// # Examples
173    ///
174    /// ```
175    /// use std::net::Ipv4Addr;
176    /// use ipnetwork::Ipv4Network;
177    ///
178    /// let net: Ipv4Network = "127.0.0.0".parse().unwrap();
179    /// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 255, 255));
180    /// let net: Ipv4Network = "127.0.0.0/16".parse().unwrap();
181    /// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 0, 0));
182    /// ```
183    pub fn mask(&self) -> Ipv4Addr {
184        debug_assert!(self.prefix <= 32);
185        if self.prefix == 0 {
186            return Ipv4Addr::new(0, 0, 0, 0);
187        }
188        let mask = u32::MAX << (IPV4_BITS - self.prefix);
189        Ipv4Addr::from(mask)
190    }
191
192    /// Returns the address of the network denoted by this `Ipv4Network`.
193    /// This means the lowest possible IPv4 address inside of the network.
194    ///
195    /// # Examples
196    ///
197    /// ```
198    /// use std::net::Ipv4Addr;
199    /// use ipnetwork::Ipv4Network;
200    ///
201    /// let net: Ipv4Network = "10.1.9.32/16".parse().unwrap();
202    /// assert_eq!(net.network(), Ipv4Addr::new(10, 1, 0, 0));
203    /// ```
204    pub fn network(&self) -> Ipv4Addr {
205        let mask = u32::from(self.mask());
206        let ip = u32::from(self.addr) & mask;
207        Ipv4Addr::from(ip)
208    }
209
210    /// Returns the broadcasting address of this `Ipv4Network`.
211    /// This means the highest possible IPv4 address inside of the network.
212    ///
213    /// # Examples
214    ///
215    /// ```
216    /// use std::net::Ipv4Addr;
217    /// use ipnetwork::Ipv4Network;
218    ///
219    /// let net: Ipv4Network = "10.9.0.32/16".parse().unwrap();
220    /// assert_eq!(net.broadcast(), Ipv4Addr::new(10, 9, 255, 255));
221    /// ```
222    pub fn broadcast(&self) -> Ipv4Addr {
223        let mask = u32::from(self.mask());
224        let broadcast = u32::from(self.addr) | !mask;
225        Ipv4Addr::from(broadcast)
226    }
227
228    /// Checks if a given `Ipv4Addr` is in this `Ipv4Network`
229    ///
230    /// # Examples
231    ///
232    /// ```
233    /// use std::net::Ipv4Addr;
234    /// use ipnetwork::Ipv4Network;
235    ///
236    /// let net: Ipv4Network = "127.0.0.0/24".parse().unwrap();
237    /// assert!(net.contains(Ipv4Addr::new(127, 0, 0, 70)));
238    /// assert!(!net.contains(Ipv4Addr::new(127, 0, 1, 70)));
239    /// ```
240    #[inline]
241    pub fn contains(&self, ip: Ipv4Addr) -> bool {
242        debug_assert!(self.prefix <= IPV4_BITS);
243
244        let mask = !(0xffff_ffff_u64 >> self.prefix) as u32;
245        let net = u32::from(self.addr) & mask;
246        (u32::from(ip) & mask) == net
247    }
248
249    /// Returns number of possible host addresses in this `Ipv4Network`.
250    ///
251    /// # Examples
252    ///
253    /// ```
254    /// use std::net::Ipv4Addr;
255    /// use ipnetwork::Ipv4Network;
256    ///
257    /// let net: Ipv4Network = "10.1.0.0/16".parse().unwrap();
258    /// assert_eq!(net.size(), 65536);
259    ///
260    /// let tinynet: Ipv4Network = "0.0.0.0/32".parse().unwrap();
261    /// assert_eq!(tinynet.size(), 1);
262    /// ```
263    pub fn size(self) -> u32 {
264        debug_assert!(self.prefix <= 32);
265        if self.prefix == 0 {
266            return u32::MAX;
267        }
268        1 << (IPV4_BITS - self.prefix)
269    }
270
271    /// Returns the `n`:th address within this network.
272    /// The adresses are indexed from 0 and `n` must be smaller than the size of the network.
273    ///
274    /// # Examples
275    ///
276    /// ```
277    /// use std::net::Ipv4Addr;
278    /// use ipnetwork::Ipv4Network;
279    ///
280    /// let net: Ipv4Network = "192.168.0.0/24".parse().unwrap();
281    /// assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(192, 168, 0, 0));
282    /// assert_eq!(net.nth(15).unwrap(), Ipv4Addr::new(192, 168, 0, 15));
283    /// assert!(net.nth(256).is_none());
284    ///
285    /// let net2: Ipv4Network = "10.0.0.0/16".parse().unwrap();
286    /// assert_eq!(net2.nth(256).unwrap(), Ipv4Addr::new(10, 0, 1, 0));
287    /// ```
288    pub fn nth(self, n: u32) -> Option<Ipv4Addr> {
289        if n < self.size() {
290            let net = u32::from(self.network());
291            Some(Ipv4Addr::from(net + n))
292        } else {
293            None
294        }
295    }
296}
297
298impl fmt::Display for Ipv4Network {
299    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
300        write!(fmt, "{}/{}", self.ip(), self.prefix())
301    }
302}
303
304/// Creates an `Ipv4Network` from parsing a string in CIDR notation.
305///
306/// # Examples
307///
308/// ```
309/// use std::net::Ipv4Addr;
310/// use ipnetwork::Ipv4Network;
311///
312/// let new = Ipv4Network::new(Ipv4Addr::new(10, 1, 9, 32), 16).unwrap();
313/// let from_cidr: Ipv4Network = "10.1.9.32/16".parse().unwrap();
314/// assert_eq!(new.ip(), from_cidr.ip());
315/// assert_eq!(new.prefix(), from_cidr.prefix());
316/// ```
317impl FromStr for Ipv4Network {
318    type Err = IpNetworkError;
319    fn from_str(s: &str) -> Result<Self, Self::Err> {
320        let (addr_str, prefix_str) = cidr_parts(s)?;
321        let addr = Ipv4Addr::from_str(addr_str)?;
322        let prefix = match prefix_str {
323            Some(v) => {
324                if let Ok(netmask) = Ipv4Addr::from_str(v) {
325                    ipv4_mask_to_prefix(netmask)?
326                } else {
327                    parse_prefix(v, IPV4_BITS)?
328                }
329            }
330            None => IPV4_BITS,
331        };
332        Ipv4Network::new(addr, prefix)
333    }
334}
335
336impl TryFrom<&str> for Ipv4Network {
337    type Error = IpNetworkError;
338
339    fn try_from(s: &str) -> Result<Self, Self::Error> {
340        Ipv4Network::from_str(s)
341    }
342}
343
344impl From<Ipv4Addr> for Ipv4Network {
345    fn from(a: Ipv4Addr) -> Ipv4Network {
346        Ipv4Network {
347            addr: a,
348            prefix: 32,
349        }
350    }
351}
352
353#[derive(Clone, Debug)]
354pub struct Ipv4NetworkIterator {
355    next: Option<u32>,
356    end: u32,
357}
358
359impl Iterator for Ipv4NetworkIterator {
360    type Item = Ipv4Addr;
361
362    fn next(&mut self) -> Option<Ipv4Addr> {
363        let next = self.next?;
364        self.next = if next == self.end {
365            None
366        } else {
367            Some(next + 1)
368        };
369        Some(next.into())
370    }
371}
372
373impl IntoIterator for &'_ Ipv4Network {
374    type IntoIter = Ipv4NetworkIterator;
375    type Item = Ipv4Addr;
376    fn into_iter(self) -> Ipv4NetworkIterator {
377        self.iter()
378    }
379}
380
381/// Converts a `Ipv4Addr` network mask into a prefix.
382///
383/// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`.
384pub fn ipv4_mask_to_prefix(mask: Ipv4Addr) -> Result<u8, IpNetworkError> {
385    let mask = u32::from(mask);
386
387    let prefix = (!mask).leading_zeros() as u8;
388    if (u64::from(mask) << prefix) & 0xffff_ffff != 0 {
389        Err(IpNetworkError::InvalidPrefix)
390    } else {
391        Ok(prefix)
392    }
393}
394
395#[cfg(test)]
396mod test {
397    use super::*;
398    use std::collections::HashMap;
399    use std::mem;
400    use std::net::Ipv4Addr;
401
402    #[test]
403    fn create_v4() {
404        let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
405        assert_eq!(cidr.prefix(), 24);
406    }
407
408    #[test]
409    fn create_v4_invalid_prefix() {
410        let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33);
411        assert!(net.is_err());
412    }
413
414    #[test]
415    fn create_checked_v4() {
416        let cidr = Ipv4Network::new_checked(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
417        assert_eq!(cidr.prefix(), 24);
418    }
419
420    #[test]
421    #[should_panic]
422    fn try_create_invalid_checked_v4() {
423        Ipv4Network::new_checked(Ipv4Addr::new(0, 0, 0, 0), 33).unwrap();
424    }
425
426    #[test]
427    fn parse_v4_24bit() {
428        let cidr: Ipv4Network = "127.1.0.0/24".parse().unwrap();
429        assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0));
430        assert_eq!(cidr.prefix(), 24);
431    }
432
433    #[test]
434    fn parse_v4_32bit() {
435        let cidr: Ipv4Network = "127.0.0.0/32".parse().unwrap();
436        assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
437        assert_eq!(cidr.prefix(), 32);
438    }
439
440    #[test]
441    fn parse_v4_noprefix() {
442        let cidr: Ipv4Network = "127.0.0.0".parse().unwrap();
443        assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
444        assert_eq!(cidr.prefix(), 32);
445    }
446
447    #[test]
448    fn parse_v4_fail_addr() {
449        let cidr: Option<Ipv4Network> = "10.a.b/8".parse().ok();
450        assert_eq!(None, cidr);
451    }
452
453    #[test]
454    fn parse_v4_fail_addr2() {
455        let cidr: Option<Ipv4Network> = "10.1.1.1.0/8".parse().ok();
456        assert_eq!(None, cidr);
457    }
458
459    #[test]
460    fn parse_v4_fail_addr3() {
461        let cidr: Option<Ipv4Network> = "256/8".parse().ok();
462        assert_eq!(None, cidr);
463    }
464
465    #[test]
466    fn parse_v4_non_zero_host_bits() {
467        let cidr: Ipv4Network = "10.1.1.1/24".parse().unwrap();
468        assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1));
469        assert_eq!(cidr.prefix(), 24);
470    }
471
472    #[test]
473    fn parse_v4_fail_prefix() {
474        let cidr: Option<Ipv4Network> = "0/39".parse().ok();
475        assert_eq!(None, cidr);
476    }
477
478    #[test]
479    fn parse_v4_fail_two_slashes() {
480        let cidr: Option<Ipv4Network> = "10.1.1.1/24/".parse().ok();
481        assert_eq!(None, cidr);
482    }
483
484    #[test]
485    fn nth_v4() {
486        let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap();
487        assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0));
488        assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1));
489        assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255));
490        assert!(net.nth(256).is_none());
491    }
492
493    #[test]
494    fn nth_v4_fail() {
495        let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap();
496        assert!(net.nth(1).is_none());
497    }
498
499    #[test]
500    fn hash_eq_compatibility_v4() {
501        let mut map = HashMap::new();
502        let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
503        map.insert(net, 137);
504        assert_eq!(137, map[&net]);
505    }
506
507    #[test]
508    #[allow(dropping_copy_types)]
509    fn copy_compatibility_v4() {
510        let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
511        mem::drop(net);
512        assert_eq!(16, net.prefix());
513    }
514
515    #[test]
516    fn mask_v4() {
517        let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap();
518        let mask = cidr.mask();
519        assert_eq!(mask, Ipv4Addr::new(255, 255, 255, 248));
520    }
521
522    #[test]
523    fn network_v4() {
524        let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
525        let net = cidr.network();
526        assert_eq!(net, Ipv4Addr::new(10, 10, 0, 0));
527    }
528
529    #[test]
530    fn broadcast_v4() {
531        let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
532        let bcast = cidr.broadcast();
533        assert_eq!(bcast, Ipv4Addr::new(10, 10, 1, 255));
534    }
535
536    #[test]
537    fn contains_v4() {
538        let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap();
539        let ip = Ipv4Addr::new(74, 125, 227, 4);
540        assert!(cidr.contains(ip));
541    }
542
543    #[test]
544    fn not_contains_v4() {
545        let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap();
546        let ip = Ipv4Addr::new(10, 1, 0, 1);
547        assert!(!cidr.contains(ip));
548    }
549
550    #[test]
551    fn iterator_v4() {
552        let cidr: Ipv4Network = "192.168.122.0/30".parse().unwrap();
553        let mut iter = cidr.iter();
554        assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap());
555        assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap());
556        assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap());
557        assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap());
558        assert_eq!(None, iter.next());
559    }
560
561    // Tests the entire IPv4 space to see if the iterator will stop at the correct place
562    // and not overflow or wrap around. Ignored since it takes a long time to run.
563    #[test]
564    #[ignore]
565    fn iterator_v4_huge() {
566        let cidr: Ipv4Network = "0/0".parse().unwrap();
567        let mut iter = cidr.iter();
568        for i in 0..(u32::MAX as u64 + 1) {
569            assert_eq!(i as u32, u32::from(iter.next().unwrap()));
570        }
571        assert_eq!(None, iter.next());
572    }
573
574    #[test]
575    fn v4_mask_to_prefix() {
576        let mask = Ipv4Addr::new(255, 255, 255, 128);
577        let prefix = ipv4_mask_to_prefix(mask).unwrap();
578        assert_eq!(prefix, 25);
579    }
580
581    /// Parse netmask as well as prefix
582    #[test]
583    fn parse_netmask() {
584        let from_netmask: Ipv4Network = "192.168.1.0/255.255.255.0".parse().unwrap();
585        let from_prefix: Ipv4Network = "192.168.1.0/24".parse().unwrap();
586        assert_eq!(from_netmask, from_prefix);
587    }
588
589    #[test]
590    fn parse_netmask_broken_v4() {
591        assert_eq!(
592            "192.168.1.0/255.0.255.0".parse::<Ipv4Network>(),
593            Err(IpNetworkError::InvalidPrefix)
594        );
595    }
596
597    #[test]
598    fn invalid_v4_mask_to_prefix() {
599        let mask = Ipv4Addr::new(255, 0, 255, 0);
600        let prefix = ipv4_mask_to_prefix(mask);
601        assert!(prefix.is_err());
602    }
603
604    #[test]
605    fn ipv4network_with_netmask() {
606        {
607            // Positive test-case.
608            let addr = Ipv4Addr::new(127, 0, 0, 1);
609            let mask = Ipv4Addr::new(255, 0, 0, 0);
610            let net = Ipv4Network::with_netmask(addr, mask).unwrap();
611            let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 8).unwrap();
612            assert_eq!(net, expected);
613        }
614        {
615            // Negative test-case.
616            let addr = Ipv4Addr::new(127, 0, 0, 1);
617            let mask = Ipv4Addr::new(255, 0, 255, 0);
618            Ipv4Network::with_netmask(addr, mask).unwrap_err();
619        }
620    }
621
622    #[test]
623    fn ipv4network_from_ipv4addr() {
624        let net = Ipv4Network::from(Ipv4Addr::new(127, 0, 0, 1));
625        let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 32).unwrap();
626        assert_eq!(net, expected);
627    }
628
629    #[test]
630    fn test_send() {
631        fn assert_send<T: Send>() {}
632        assert_send::<Ipv4Network>();
633    }
634
635    #[test]
636    fn test_sync() {
637        fn assert_sync<T: Sync>() {}
638        assert_sync::<Ipv4Network>();
639    }
640
641    // Tests from cpython https://github.com/python/cpython/blob/e9bc4172d18db9c182d8e04dd7b033097a994c06/Lib/test/test_ipaddress.py
642    #[test]
643    fn test_is_subnet_of() {
644        let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();
645
646        test_cases.insert(
647            (
648                "10.0.0.0/30".parse().unwrap(),
649                "10.0.1.0/24".parse().unwrap(),
650            ),
651            false,
652        );
653        test_cases.insert(
654            (
655                "10.0.0.0/30".parse().unwrap(),
656                "10.0.0.0/24".parse().unwrap(),
657            ),
658            true,
659        );
660        test_cases.insert(
661            (
662                "10.0.0.0/30".parse().unwrap(),
663                "10.0.1.0/24".parse().unwrap(),
664            ),
665            false,
666        );
667        test_cases.insert(
668            (
669                "10.0.1.0/24".parse().unwrap(),
670                "10.0.0.0/30".parse().unwrap(),
671            ),
672            false,
673        );
674
675        for (key, val) in test_cases.iter() {
676            let (src, dest) = (key.0, key.1);
677            assert_eq!(
678                src.is_subnet_of(dest),
679                *val,
680                "testing with {src} and {dest}"
681            );
682        }
683    }
684
685    #[test]
686    fn test_is_supernet_of() {
687        let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();
688
689        test_cases.insert(
690            (
691                "10.0.0.0/30".parse().unwrap(),
692                "10.0.1.0/24".parse().unwrap(),
693            ),
694            false,
695        );
696        test_cases.insert(
697            (
698                "10.0.0.0/30".parse().unwrap(),
699                "10.0.0.0/24".parse().unwrap(),
700            ),
701            false,
702        );
703        test_cases.insert(
704            (
705                "10.0.0.0/30".parse().unwrap(),
706                "10.0.1.0/24".parse().unwrap(),
707            ),
708            false,
709        );
710        test_cases.insert(
711            (
712                "10.0.0.0/24".parse().unwrap(),
713                "10.0.0.0/30".parse().unwrap(),
714            ),
715            true,
716        );
717
718        for (key, val) in test_cases.iter() {
719            let (src, dest) = (key.0, key.1);
720            assert_eq!(
721                src.is_supernet_of(dest),
722                *val,
723                "testing with {src} and {dest}"
724            );
725        }
726    }
727
728    #[test]
729    fn test_overlaps() {
730        let other: Ipv4Network = "1.2.3.0/30".parse().unwrap();
731        let other2: Ipv4Network = "1.2.2.0/24".parse().unwrap();
732        let other3: Ipv4Network = "1.2.2.64/26".parse().unwrap();
733
734        let skynet: Ipv4Network = "1.2.3.0/24".parse().unwrap();
735        assert!(skynet.overlaps(other));
736        assert!(!skynet.overlaps(other2));
737        assert!(other2.overlaps(other3));
738    }
739
740    #[test]
741    fn edges() {
742        let low: Ipv4Network = "0.0.0.0/24".parse().unwrap();
743        let low_addrs: Vec<Ipv4Addr> = low.iter().collect();
744        assert_eq!(256, low_addrs.len());
745        assert_eq!("0.0.0.0".parse::<Ipv4Addr>().unwrap(), low_addrs[0]);
746        assert_eq!("0.0.0.255".parse::<Ipv4Addr>().unwrap(), low_addrs[255]);
747
748        let high: Ipv4Network = "255.255.255.0/24".parse().unwrap();
749        let high_addrs: Vec<Ipv4Addr> = high.iter().collect();
750        assert_eq!(256, high_addrs.len());
751        assert_eq!("255.255.255.0".parse::<Ipv4Addr>().unwrap(), high_addrs[0]);
752        assert_eq!(
753            "255.255.255.255".parse::<Ipv4Addr>().unwrap(),
754            high_addrs[255]
755        );
756    }
757}