ipnetwork/
ipv4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
use crate::common::{cidr_parts, parse_prefix, IpNetworkError};
use std::{convert::TryFrom, fmt, net::Ipv4Addr, str::FromStr};

const IPV4_BITS: u8 = 32;

/// Represents a network range where the IP addresses are of v4
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Ipv4Network {
    addr: Ipv4Addr,
    prefix: u8,
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Ipv4Network {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let s = <String>::deserialize(deserializer)?;
        Ipv4Network::from_str(&s).map_err(serde::de::Error::custom)
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for Ipv4Network {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        serializer.collect_str(self)
    }
}

#[cfg(feature = "schemars")]
impl schemars::JsonSchema for Ipv4Network {
    fn schema_name() -> String {
        "Ipv4Network".to_string()
    }

    fn json_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
        schemars::schema::SchemaObject {
            instance_type: Some(schemars::schema::InstanceType::String.into()),
            string: Some(Box::new(schemars::schema::StringValidation {
                pattern: Some(
                    concat!(
                        r#"^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}"#,
                        r#"(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"#,
                        r#"\/(3[0-2]|[0-2]?[0-9])$"#,
                    )
                    .to_string(),
                ),
                ..Default::default()
            })),
            extensions: [("x-rust-type".to_string(), "ipnetwork::Ipv4Network".into())]
                .iter()
                .cloned()
                .collect(),
            ..Default::default()
        }
        .into()
    }
}

impl Ipv4Network {
    /// Constructs a new `Ipv4Network` from any `Ipv4Addr` and a prefix denoting the network size.
    ///
    /// If the prefix is larger than 32 this will return an `IpNetworkError::InvalidPrefix`.
    pub const fn new(addr: Ipv4Addr, prefix: u8) -> Result<Ipv4Network, IpNetworkError> {
        if prefix > IPV4_BITS {
            Err(IpNetworkError::InvalidPrefix)
        } else {
            Ok(Ipv4Network { addr, prefix })
        }
    }

    /// Constructs a new `Ipv4Network` from a network address and a network mask.
    ///
    /// If the netmask is not valid this will return an `IpNetworkError::InvalidPrefix`.
    pub fn with_netmask(
        netaddr: Ipv4Addr,
        netmask: Ipv4Addr,
    ) -> Result<Ipv4Network, IpNetworkError> {
        let prefix = ipv4_mask_to_prefix(netmask)?;
        let net = Self {
            addr: netaddr,
            prefix,
        };
        Ok(net)
    }

    /// Returns an iterator over `Ipv4Network`. Each call to `next` will return the next
    /// `Ipv4Addr` in the given network. `None` will be returned when there are no more
    /// addresses.
    pub fn iter(self) -> Ipv4NetworkIterator {
        let start = u32::from(self.network());
        let end = start + (self.size() - 1);
        Ipv4NetworkIterator {
            next: Some(start),
            end,
        }
    }

    pub fn ip(self) -> Ipv4Addr {
        self.addr
    }

    pub fn prefix(self) -> u8 {
        self.prefix
    }

    /// Checks if the given `Ipv4Network` is a subnet of the other.
    pub fn is_subnet_of(self, other: Ipv4Network) -> bool {
        other.ip() <= self.ip() && other.broadcast() >= self.broadcast()
    }

    /// Checks if the given `Ipv4Network` is a supernet of the other.
    pub fn is_supernet_of(self, other: Ipv4Network) -> bool {
        other.is_subnet_of(self)
    }

    /// Checks if the given `Ipv4Network` is partly contained in other.
    pub fn overlaps(self, other: Ipv4Network) -> bool {
        other.contains(self.ip())
            || (other.contains(self.broadcast())
                || (self.contains(other.ip()) || (self.contains(other.broadcast()))))
    }

    /// Returns the mask for this `Ipv4Network`.
    /// That means the `prefix` most significant bits will be 1 and the rest 0
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv4Addr;
    /// use ipnetwork::Ipv4Network;
    ///
    /// let net: Ipv4Network = "127.0.0.0".parse().unwrap();
    /// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 255, 255));
    /// let net: Ipv4Network = "127.0.0.0/16".parse().unwrap();
    /// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 0, 0));
    /// ```
    pub fn mask(self) -> Ipv4Addr {
        let prefix = self.prefix;
        let mask = !(0xffff_ffff as u64 >> prefix) as u32;
        Ipv4Addr::from(mask)
    }

    /// Returns the address of the network denoted by this `Ipv4Network`.
    /// This means the lowest possible IPv4 address inside of the network.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv4Addr;
    /// use ipnetwork::Ipv4Network;
    ///
    /// let net: Ipv4Network = "10.1.9.32/16".parse().unwrap();
    /// assert_eq!(net.network(), Ipv4Addr::new(10, 1, 0, 0));
    /// ```
    pub fn network(self) -> Ipv4Addr {
        let mask = u32::from(self.mask());
        let ip = u32::from(self.addr) & mask;
        Ipv4Addr::from(ip)
    }

    /// Returns the broadcasting address of this `Ipv4Network`.
    /// This means the highest possible IPv4 address inside of the network.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv4Addr;
    /// use ipnetwork::Ipv4Network;
    ///
    /// let net: Ipv4Network = "10.9.0.32/16".parse().unwrap();
    /// assert_eq!(net.broadcast(), Ipv4Addr::new(10, 9, 255, 255));
    /// ```
    pub fn broadcast(self) -> Ipv4Addr {
        let mask = u32::from(self.mask());
        let broadcast = u32::from(self.addr) | !mask;
        Ipv4Addr::from(broadcast)
    }

    /// Checks if a given `Ipv4Addr` is in this `Ipv4Network`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv4Addr;
    /// use ipnetwork::Ipv4Network;
    ///
    /// let net: Ipv4Network = "127.0.0.0/24".parse().unwrap();
    /// assert!(net.contains(Ipv4Addr::new(127, 0, 0, 70)));
    /// assert!(!net.contains(Ipv4Addr::new(127, 0, 1, 70)));
    /// ```
    #[inline]
    pub fn contains(self, ip: Ipv4Addr) -> bool {
        let mask = !(0xffff_ffff as u64 >> self.prefix) as u32;
        let net = u32::from(self.addr) & mask;
        (u32::from(ip) & mask) == net
    }

    /// Returns number of possible host addresses in this `Ipv4Network`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv4Addr;
    /// use ipnetwork::Ipv4Network;
    ///
    /// let net: Ipv4Network = "10.1.0.0/16".parse().unwrap();
    /// assert_eq!(net.size(), 65536);
    ///
    /// let tinynet: Ipv4Network = "0.0.0.0/32".parse().unwrap();
    /// assert_eq!(tinynet.size(), 1);
    /// ```
    pub fn size(self) -> u32 {
        let host_bits = u32::from(IPV4_BITS - self.prefix);
        (2 as u32).pow(host_bits)
    }

    /// Returns the `n`:th address within this network.
    /// The adresses are indexed from 0 and `n` must be smaller than the size of the network.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::Ipv4Addr;
    /// use ipnetwork::Ipv4Network;
    ///
    /// let net: Ipv4Network = "192.168.0.0/24".parse().unwrap();
    /// assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(192, 168, 0, 0));
    /// assert_eq!(net.nth(15).unwrap(), Ipv4Addr::new(192, 168, 0, 15));
    /// assert!(net.nth(256).is_none());
    ///
    /// let net2: Ipv4Network = "10.0.0.0/16".parse().unwrap();
    /// assert_eq!(net2.nth(256).unwrap(), Ipv4Addr::new(10, 0, 1, 0));
    /// ```
    pub fn nth(self, n: u32) -> Option<Ipv4Addr> {
        if n < self.size() {
            let net = u32::from(self.network());
            Some(Ipv4Addr::from(net + n))
        } else {
            None
        }
    }
}

impl fmt::Display for Ipv4Network {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "{}/{}", self.ip(), self.prefix())
    }
}

/// Creates an `Ipv4Network` from parsing a string in CIDR notation.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let new = Ipv4Network::new(Ipv4Addr::new(10, 1, 9, 32), 16).unwrap();
/// let from_cidr: Ipv4Network = "10.1.9.32/16".parse().unwrap();
/// assert_eq!(new.ip(), from_cidr.ip());
/// assert_eq!(new.prefix(), from_cidr.prefix());
/// ```
impl FromStr for Ipv4Network {
    type Err = IpNetworkError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let (addr_str, prefix_str) = cidr_parts(s)?;
        let addr = Ipv4Addr::from_str(addr_str)
            .map_err(|_| IpNetworkError::InvalidAddr(addr_str.to_string()))?;
        let prefix = match prefix_str {
            Some(v) => {
                if let Ok(netmask) = Ipv4Addr::from_str(v) {
                    ipv4_mask_to_prefix(netmask)?
                } else {
                    parse_prefix(v, IPV4_BITS)?
                }
            }
            None => IPV4_BITS,
        };
        Ipv4Network::new(addr, prefix)
    }
}

impl TryFrom<&str> for Ipv4Network {
    type Error = IpNetworkError;

    fn try_from(s: &str) -> Result<Self, Self::Error> {
        Ipv4Network::from_str(s)
    }
}

impl From<Ipv4Addr> for Ipv4Network {
    fn from(a: Ipv4Addr) -> Ipv4Network {
        Ipv4Network {
            addr: a,
            prefix: 32,
        }
    }
}

#[derive(Clone, Debug)]
pub struct Ipv4NetworkIterator {
    next: Option<u32>,
    end: u32,
}

impl Iterator for Ipv4NetworkIterator {
    type Item = Ipv4Addr;

    fn next(&mut self) -> Option<Ipv4Addr> {
        let next = self.next?;
        self.next = if next == self.end {
            None
        } else {
            Some(next + 1)
        };
        Some(next.into())
    }
}

impl IntoIterator for &'_ Ipv4Network {
    type IntoIter = Ipv4NetworkIterator;
    type Item = Ipv4Addr;
    fn into_iter(self) -> Ipv4NetworkIterator {
        self.iter()
    }
}

/// Converts a `Ipv4Addr` network mask into a prefix.
///
/// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`.
pub fn ipv4_mask_to_prefix(mask: Ipv4Addr) -> Result<u8, IpNetworkError> {
    let mask = u32::from(mask);

    let prefix = (!mask).leading_zeros() as u8;
    if (u64::from(mask) << prefix) & 0xffff_ffff != 0 {
        Err(IpNetworkError::InvalidPrefix)
    } else {
        Ok(prefix)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::collections::HashMap;
    use std::mem;
    use std::net::Ipv4Addr;

    #[test]
    fn create_v4() {
        let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
        assert_eq!(cidr.prefix(), 24);
    }

    #[test]
    fn create_v4_invalid_prefix() {
        let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33);
        assert!(net.is_err());
    }

    #[test]
    fn parse_v4_24bit() {
        let cidr: Ipv4Network = "127.1.0.0/24".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0));
        assert_eq!(cidr.prefix(), 24);
    }

    #[test]
    fn parse_v4_32bit() {
        let cidr: Ipv4Network = "127.0.0.0/32".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
        assert_eq!(cidr.prefix(), 32);
    }

    #[test]
    fn parse_v4_noprefix() {
        let cidr: Ipv4Network = "127.0.0.0".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
        assert_eq!(cidr.prefix(), 32);
    }

    #[test]
    fn parse_v4_fail_addr() {
        let cidr: Option<Ipv4Network> = "10.a.b/8".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn parse_v4_fail_addr2() {
        let cidr: Option<Ipv4Network> = "10.1.1.1.0/8".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn parse_v4_fail_addr3() {
        let cidr: Option<Ipv4Network> = "256/8".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn parse_v4_non_zero_host_bits() {
        let cidr: Ipv4Network = "10.1.1.1/24".parse().unwrap();
        assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1));
        assert_eq!(cidr.prefix(), 24);
    }

    #[test]
    fn parse_v4_fail_prefix() {
        let cidr: Option<Ipv4Network> = "0/39".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn parse_v4_fail_two_slashes() {
        let cidr: Option<Ipv4Network> = "10.1.1.1/24/".parse().ok();
        assert_eq!(None, cidr);
    }

    #[test]
    fn nth_v4() {
        let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap();
        assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0));
        assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1));
        assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255));
        assert!(net.nth(256).is_none());
    }

    #[test]
    fn nth_v4_fail() {
        let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap();
        assert!(net.nth(1).is_none());
    }

    #[test]
    fn hash_eq_compatibility_v4() {
        let mut map = HashMap::new();
        let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
        map.insert(net, 137);
        assert_eq!(137, map[&net]);
    }

    #[test]
    fn copy_compatibility_v4() {
        let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
        mem::drop(net);
        assert_eq!(16, net.prefix());
    }

    #[test]
    fn mask_v4() {
        let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap();
        let mask = cidr.mask();
        assert_eq!(mask, Ipv4Addr::new(255, 255, 255, 248));
    }

    #[test]
    fn network_v4() {
        let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
        let net = cidr.network();
        assert_eq!(net, Ipv4Addr::new(10, 10, 0, 0));
    }

    #[test]
    fn broadcast_v4() {
        let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
        let bcast = cidr.broadcast();
        assert_eq!(bcast, Ipv4Addr::new(10, 10, 1, 255));
    }

    #[test]
    fn contains_v4() {
        let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap();
        let ip = Ipv4Addr::new(74, 125, 227, 4);
        assert!(cidr.contains(ip));
    }

    #[test]
    fn not_contains_v4() {
        let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap();
        let ip = Ipv4Addr::new(10, 1, 0, 1);
        assert!(!cidr.contains(ip));
    }

    #[test]
    fn iterator_v4() {
        let cidr: Ipv4Network = "192.168.122.0/30".parse().unwrap();
        let mut iter = cidr.iter();
        assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap());
        assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap());
        assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap());
        assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap());
        assert_eq!(None, iter.next());
    }

    // Tests the entire IPv4 space to see if the iterator will stop at the correct place
    // and not overflow or wrap around. Ignored since it takes a long time to run.
    #[test]
    #[ignore]
    fn iterator_v4_huge() {
        let cidr: Ipv4Network = "0/0".parse().unwrap();
        let mut iter = cidr.iter();
        for i in 0..(u32::max_value() as u64 + 1) {
            assert_eq!(i as u32, u32::from(iter.next().unwrap()));
        }
        assert_eq!(None, iter.next());
    }

    #[test]
    fn v4_mask_to_prefix() {
        let mask = Ipv4Addr::new(255, 255, 255, 128);
        let prefix = ipv4_mask_to_prefix(mask).unwrap();
        assert_eq!(prefix, 25);
    }

    /// Parse netmask as well as prefix
    #[test]
    fn parse_netmask() {
        let from_netmask: Ipv4Network = "192.168.1.0/255.255.255.0".parse().unwrap();
        let from_prefix: Ipv4Network = "192.168.1.0/24".parse().unwrap();
        assert_eq!(from_netmask, from_prefix);
    }

    #[test]
    fn parse_netmask_broken_v4() {
        assert_eq!(
            "192.168.1.0/255.0.255.0".parse::<Ipv4Network>(),
            Err(IpNetworkError::InvalidPrefix)
        );
    }

    #[test]
    fn invalid_v4_mask_to_prefix() {
        let mask = Ipv4Addr::new(255, 0, 255, 0);
        let prefix = ipv4_mask_to_prefix(mask);
        assert!(prefix.is_err());
    }

    #[test]
    fn ipv4network_with_netmask() {
        {
            // Positive test-case.
            let addr = Ipv4Addr::new(127, 0, 0, 1);
            let mask = Ipv4Addr::new(255, 0, 0, 0);
            let net = Ipv4Network::with_netmask(addr, mask).unwrap();
            let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 8).unwrap();
            assert_eq!(net, expected);
        }
        {
            // Negative test-case.
            let addr = Ipv4Addr::new(127, 0, 0, 1);
            let mask = Ipv4Addr::new(255, 0, 255, 0);
            Ipv4Network::with_netmask(addr, mask).unwrap_err();
        }
    }

    #[test]
    fn ipv4network_from_ipv4addr() {
        let net = Ipv4Network::from(Ipv4Addr::new(127, 0, 0, 1));
        let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 32).unwrap();
        assert_eq!(net, expected);
    }

    #[test]
    fn test_send() {
        fn assert_send<T: Send>() {}
        assert_send::<Ipv4Network>();
    }

    #[test]
    fn test_sync() {
        fn assert_sync<T: Sync>() {}
        assert_sync::<Ipv4Network>();
    }

    // Tests from cpython https://github.com/python/cpython/blob/e9bc4172d18db9c182d8e04dd7b033097a994c06/Lib/test/test_ipaddress.py
    #[test]
    fn test_is_subnet_of() {
        let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();

        test_cases.insert(
            (
                "10.0.0.0/30".parse().unwrap(),
                "10.0.1.0/24".parse().unwrap(),
            ),
            false,
        );
        test_cases.insert(
            (
                "10.0.0.0/30".parse().unwrap(),
                "10.0.0.0/24".parse().unwrap(),
            ),
            true,
        );
        test_cases.insert(
            (
                "10.0.0.0/30".parse().unwrap(),
                "10.0.1.0/24".parse().unwrap(),
            ),
            false,
        );
        test_cases.insert(
            (
                "10.0.1.0/24".parse().unwrap(),
                "10.0.0.0/30".parse().unwrap(),
            ),
            false,
        );

        for (key, val) in test_cases.iter() {
            let (src, dest) = (key.0, key.1);
            assert_eq!(
                src.is_subnet_of(dest),
                *val,
                "testing with {} and {}",
                src,
                dest
            );
        }
    }

    #[test]
    fn test_is_supernet_of() {
        let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();

        test_cases.insert(
            (
                "10.0.0.0/30".parse().unwrap(),
                "10.0.1.0/24".parse().unwrap(),
            ),
            false,
        );
        test_cases.insert(
            (
                "10.0.0.0/30".parse().unwrap(),
                "10.0.0.0/24".parse().unwrap(),
            ),
            false,
        );
        test_cases.insert(
            (
                "10.0.0.0/30".parse().unwrap(),
                "10.0.1.0/24".parse().unwrap(),
            ),
            false,
        );
        test_cases.insert(
            (
                "10.0.0.0/24".parse().unwrap(),
                "10.0.0.0/30".parse().unwrap(),
            ),
            true,
        );

        for (key, val) in test_cases.iter() {
            let (src, dest) = (key.0, key.1);
            assert_eq!(
                src.is_supernet_of(dest),
                *val,
                "testing with {} and {}",
                src,
                dest
            );
        }
    }

    #[test]
    fn test_overlaps() {
        let other: Ipv4Network = "1.2.3.0/30".parse().unwrap();
        let other2: Ipv4Network = "1.2.2.0/24".parse().unwrap();
        let other3: Ipv4Network = "1.2.2.64/26".parse().unwrap();

        let skynet: Ipv4Network = "1.2.3.0/24".parse().unwrap();
        assert_eq!(skynet.overlaps(other), true);
        assert_eq!(skynet.overlaps(other2), false);
        assert_eq!(other2.overlaps(other3), true);
    }

    #[test]
    fn edges() {
        let low: Ipv4Network = "0.0.0.0/24".parse().unwrap();
        let low_addrs: Vec<Ipv4Addr> = low.iter().collect();
        assert_eq!(256, low_addrs.len());
        assert_eq!("0.0.0.0".parse::<Ipv4Addr>().unwrap(), low_addrs[0]);
        assert_eq!("0.0.0.255".parse::<Ipv4Addr>().unwrap(), low_addrs[255]);

        let high: Ipv4Network = "255.255.255.0/24".parse().unwrap();
        let high_addrs: Vec<Ipv4Addr> = high.iter().collect();
        assert_eq!(256, high_addrs.len());
        assert_eq!("255.255.255.0".parse::<Ipv4Addr>().unwrap(), high_addrs[0]);
        assert_eq!(
            "255.255.255.255".parse::<Ipv4Addr>().unwrap(),
            high_addrs[255]
        );
    }
}