libm/math/
jnf.rs

1/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2/*
3 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4 */
5/*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16use super::{fabsf, j0f, j1f, logf, y0f, y1f};
17
18/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
19pub fn jnf(n: i32, mut x: f32) -> f32 {
20    let mut ix: u32;
21    let mut nm1: i32;
22    let mut sign: bool;
23    let mut i: i32;
24    let mut a: f32;
25    let mut b: f32;
26    let mut temp: f32;
27
28    ix = x.to_bits();
29    sign = (ix >> 31) != 0;
30    ix &= 0x7fffffff;
31    if ix > 0x7f800000 {
32        /* nan */
33        return x;
34    }
35
36    /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
37    if n == 0 {
38        return j0f(x);
39    }
40    if n < 0 {
41        nm1 = -(n + 1);
42        x = -x;
43        sign = !sign;
44    } else {
45        nm1 = n - 1;
46    }
47    if nm1 == 0 {
48        return j1f(x);
49    }
50
51    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
52    x = fabsf(x);
53    if ix == 0 || ix == 0x7f800000 {
54        /* if x is 0 or inf */
55        b = 0.0;
56    } else if (nm1 as f32) < x {
57        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
58        a = j0f(x);
59        b = j1f(x);
60        i = 0;
61        while i < nm1 {
62            i += 1;
63            temp = b;
64            b = b * (2.0 * (i as f32) / x) - a;
65            a = temp;
66        }
67    } else {
68        if ix < 0x35800000 {
69            /* x < 2**-20 */
70            /* x is tiny, return the first Taylor expansion of J(n,x)
71             * J(n,x) = 1/n!*(x/2)^n  - ...
72             */
73            if nm1 > 8 {
74                /* underflow */
75                nm1 = 8;
76            }
77            temp = 0.5 * x;
78            b = temp;
79            a = 1.0;
80            i = 2;
81            while i <= nm1 + 1 {
82                a *= i as f32; /* a = n! */
83                b *= temp; /* b = (x/2)^n */
84                i += 1;
85            }
86            b = b / a;
87        } else {
88            /* use backward recurrence */
89            /*                      x      x^2      x^2
90             *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
91             *                      2n  - 2(n+1) - 2(n+2)
92             *
93             *                      1      1        1
94             *  (for large x)   =  ----  ------   ------   .....
95             *                      2n   2(n+1)   2(n+2)
96             *                      -- - ------ - ------ -
97             *                       x     x         x
98             *
99             * Let w = 2n/x and h=2/x, then the above quotient
100             * is equal to the continued fraction:
101             *                  1
102             *      = -----------------------
103             *                     1
104             *         w - -----------------
105             *                        1
106             *              w+h - ---------
107             *                     w+2h - ...
108             *
109             * To determine how many terms needed, let
110             * Q(0) = w, Q(1) = w(w+h) - 1,
111             * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
112             * When Q(k) > 1e4      good for single
113             * When Q(k) > 1e9      good for double
114             * When Q(k) > 1e17     good for quadruple
115             */
116            /* determine k */
117            let mut t: f32;
118            let mut q0: f32;
119            let mut q1: f32;
120            let mut w: f32;
121            let h: f32;
122            let mut z: f32;
123            let mut tmp: f32;
124            let nf: f32;
125            let mut k: i32;
126
127            nf = (nm1 as f32) + 1.0;
128            w = 2.0 * (nf as f32) / x;
129            h = 2.0 / x;
130            z = w + h;
131            q0 = w;
132            q1 = w * z - 1.0;
133            k = 1;
134            while q1 < 1.0e4 {
135                k += 1;
136                z += h;
137                tmp = z * q1 - q0;
138                q0 = q1;
139                q1 = tmp;
140            }
141            t = 0.0;
142            i = k;
143            while i >= 0 {
144                t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
145                i -= 1;
146            }
147            a = t;
148            b = 1.0;
149            /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
150             *  Hence, if n*(log(2n/x)) > ...
151             *  single 8.8722839355e+01
152             *  double 7.09782712893383973096e+02
153             *  long double 1.1356523406294143949491931077970765006170e+04
154             *  then recurrent value may overflow and the result is
155             *  likely underflow to zero
156             */
157            tmp = nf * logf(fabsf(w));
158            if tmp < 88.721679688 {
159                i = nm1;
160                while i > 0 {
161                    temp = b;
162                    b = 2.0 * (i as f32) * b / x - a;
163                    a = temp;
164                    i -= 1;
165                }
166            } else {
167                i = nm1;
168                while i > 0 {
169                    temp = b;
170                    b = 2.0 * (i as f32) * b / x - a;
171                    a = temp;
172                    /* scale b to avoid spurious overflow */
173                    let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
174                    if b > x1p60 {
175                        a /= b;
176                        t /= b;
177                        b = 1.0;
178                    }
179                    i -= 1;
180                }
181            }
182            z = j0f(x);
183            w = j1f(x);
184            if fabsf(z) >= fabsf(w) {
185                b = t * z / b;
186            } else {
187                b = t * w / a;
188            }
189        }
190    }
191
192    if sign { -b } else { b }
193}
194
195/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
196pub fn ynf(n: i32, x: f32) -> f32 {
197    let mut ix: u32;
198    let mut ib: u32;
199    let nm1: i32;
200    let mut sign: bool;
201    let mut i: i32;
202    let mut a: f32;
203    let mut b: f32;
204    let mut temp: f32;
205
206    ix = x.to_bits();
207    sign = (ix >> 31) != 0;
208    ix &= 0x7fffffff;
209    if ix > 0x7f800000 {
210        /* nan */
211        return x;
212    }
213    if sign && ix != 0 {
214        /* x < 0 */
215        return 0.0 / 0.0;
216    }
217    if ix == 0x7f800000 {
218        return 0.0;
219    }
220
221    if n == 0 {
222        return y0f(x);
223    }
224    if n < 0 {
225        nm1 = -(n + 1);
226        sign = (n & 1) != 0;
227    } else {
228        nm1 = n - 1;
229        sign = false;
230    }
231    if nm1 == 0 {
232        if sign {
233            return -y1f(x);
234        } else {
235            return y1f(x);
236        }
237    }
238
239    a = y0f(x);
240    b = y1f(x);
241    /* quit if b is -inf */
242    ib = b.to_bits();
243    i = 0;
244    while i < nm1 && ib != 0xff800000 {
245        i += 1;
246        temp = b;
247        b = (2.0 * (i as f32) / x) * b - a;
248        ib = b.to_bits();
249        a = temp;
250    }
251
252    if sign { -b } else { b }
253}