zerovec/ule/
tuple.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

//! ULE impls for tuples.
//!
//! Rust does not guarantee the layout of tuples, so ZeroVec defines its own tuple ULE types.
//!
//! Impls are defined for tuples of up to 6 elements. For longer tuples, use a custom struct
//! with [`#[make_ule]`](crate::make_ule).
//!
//! # Examples
//!
//! ```
//! use zerovec::ZeroVec;
//!
//! // ZeroVec of tuples!
//! let zerovec: ZeroVec<(u32, char)> = [(1, 'a'), (1234901, '啊'), (100, 'अ')]
//!     .iter()
//!     .copied()
//!     .collect();
//!
//! assert_eq!(zerovec.get(1), Some((1234901, '啊')));
//! ```

use super::*;
use core::fmt;
use core::mem;

macro_rules! tuple_ule {
    ($name:ident, $len:literal, [ $($t:ident $i:tt),+ ]) => {
        #[doc = concat!("ULE type for tuples with ", $len, " elements.")]
        #[repr(C, packed)]
        #[allow(clippy::exhaustive_structs)] // stable
        pub struct $name<$($t),+>($(pub $t),+);

        // Safety (based on the safety checklist on the ULE trait):
        //  1. TupleULE does not include any uninitialized or padding bytes.
        //     (achieved by `#[repr(C, packed)]` on a struct containing only ULE fields)
        //  2. TupleULE is aligned to 1 byte.
        //     (achieved by `#[repr(C, packed)]` on a struct containing only ULE fields)
        //  3. The impl of validate_byte_slice() returns an error if any byte is not valid.
        //  4. The impl of validate_byte_slice() returns an error if there are extra bytes.
        //  5. The other ULE methods use the default impl.
        //  6. TupleULE byte equality is semantic equality by relying on the ULE equality
        //     invariant on the subfields
        unsafe impl<$($t: ULE),+> ULE for $name<$($t),+> {
            fn validate_byte_slice(bytes: &[u8]) -> Result<(), ZeroVecError> {
                // expands to: 0size + mem::size_of::<A>() + mem::size_of::<B>();
                let ule_bytes = 0usize $(+ mem::size_of::<$t>())+;
                if bytes.len() % ule_bytes != 0 {
                    return Err(ZeroVecError::length::<Self>(bytes.len()));
                }
                for chunk in bytes.chunks(ule_bytes) {
                    let mut i = 0;
                    $(
                        let j = i;
                        i += mem::size_of::<$t>();
                        #[allow(clippy::indexing_slicing)] // length checked
                        <$t>::validate_byte_slice(&chunk[j..i])?;
                    )+
                }
                Ok(())
            }
        }

        impl<$($t: AsULE),+> AsULE for ($($t),+) {
            type ULE = $name<$(<$t>::ULE),+>;

            #[inline]
            fn to_unaligned(self) -> Self::ULE {
                $name($(
                    self.$i.to_unaligned()
                ),+)
            }

            #[inline]
            fn from_unaligned(unaligned: Self::ULE) -> Self {
                ($(
                    <$t>::from_unaligned(unaligned.$i)
                ),+)
            }
        }

        impl<$($t: fmt::Debug + ULE),+> fmt::Debug for $name<$($t),+> {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
                ($(self.$i),+).fmt(f)
            }
        }

        // We need manual impls since `#[derive()]` is disallowed on packed types
        impl<$($t: PartialEq + ULE),+> PartialEq for $name<$($t),+> {
            fn eq(&self, other: &Self) -> bool {
                ($(self.$i),+).eq(&($(other.$i),+))
            }
        }

        impl<$($t: Eq + ULE),+> Eq for $name<$($t),+> {}

        impl<$($t: PartialOrd + ULE),+> PartialOrd for $name<$($t),+> {
            fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
                ($(self.$i),+).partial_cmp(&($(other.$i),+))
            }
        }

        impl<$($t: Ord + ULE),+> Ord for $name<$($t),+> {
            fn cmp(&self, other: &Self) -> core::cmp::Ordering {
                ($(self.$i),+).cmp(&($(other.$i),+))
            }
        }

        impl<$($t: ULE),+> Clone for $name<$($t),+> {
            fn clone(&self) -> Self {
                *self
            }
        }

        impl<$($t: ULE),+> Copy for $name<$($t),+> {}

        impl<'a, $($t: Ord + AsULE + 'static),+> crate::map::ZeroMapKV<'a> for ($($t),+) {
            type Container = crate::ZeroVec<'a, ($($t),+)>;
            type Slice = crate::ZeroSlice<($($t),+)>;
            type GetType = $name<$(<$t>::ULE),+>;
            type OwnedType = ($($t),+);
        }
    };
}

tuple_ule!(Tuple2ULE, "2", [ A 0, B 1 ]);
tuple_ule!(Tuple3ULE, "3", [ A 0, B 1, C 2 ]);
tuple_ule!(Tuple4ULE, "4", [ A 0, B 1, C 2, D 3 ]);
tuple_ule!(Tuple5ULE, "5", [ A 0, B 1, C 2, D 3, E 4 ]);
tuple_ule!(Tuple6ULE, "6", [ A 0, B 1, C 2, D 3, E 4, F 5 ]);

#[test]
fn test_pairule_validate() {
    use crate::ZeroVec;
    let vec: Vec<(u32, char)> = vec![(1, 'a'), (1234901, '啊'), (100, 'अ')];
    let zerovec: ZeroVec<(u32, char)> = vec.iter().copied().collect();
    let bytes = zerovec.as_bytes();
    let zerovec2 = ZeroVec::parse_byte_slice(bytes).unwrap();
    assert_eq!(zerovec, zerovec2);

    // Test failed validation with a correctly sized but differently constrained tuple
    // Note: 1234901 is not a valid char
    let zerovec3 = ZeroVec::<(char, u32)>::parse_byte_slice(bytes);
    assert!(zerovec3.is_err());
}

#[test]
fn test_tripleule_validate() {
    use crate::ZeroVec;
    let vec: Vec<(u32, char, i8)> = vec![(1, 'a', -5), (1234901, '啊', 3), (100, 'अ', -127)];
    let zerovec: ZeroVec<(u32, char, i8)> = vec.iter().copied().collect();
    let bytes = zerovec.as_bytes();
    let zerovec2 = ZeroVec::parse_byte_slice(bytes).unwrap();
    assert_eq!(zerovec, zerovec2);

    // Test failed validation with a correctly sized but differently constrained tuple
    // Note: 1234901 is not a valid char
    let zerovec3 = ZeroVec::<(char, i8, u32)>::parse_byte_slice(bytes);
    assert!(zerovec3.is_err());
}

#[test]
fn test_quadule_validate() {
    use crate::ZeroVec;
    let vec: Vec<(u32, char, i8, u16)> =
        vec![(1, 'a', -5, 3), (1234901, '啊', 3, 11), (100, 'अ', -127, 0)];
    let zerovec: ZeroVec<(u32, char, i8, u16)> = vec.iter().copied().collect();
    let bytes = zerovec.as_bytes();
    let zerovec2 = ZeroVec::parse_byte_slice(bytes).unwrap();
    assert_eq!(zerovec, zerovec2);

    // Test failed validation with a correctly sized but differently constrained tuple
    // Note: 1234901 is not a valid char
    let zerovec3 = ZeroVec::<(char, i8, u16, u32)>::parse_byte_slice(bytes);
    assert!(zerovec3.is_err());
}