zerovec/ule/
mod.rs

1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5#![allow(clippy::upper_case_acronyms)]
6
7//! Traits over unaligned little-endian data (ULE, pronounced "yule").
8//!
9//! The main traits for this module are [`ULE`], [`AsULE`] and, [`VarULE`].
10//!
11//! See [the design doc](https://github.com/unicode-org/icu4x/blob/main/utils/zerovec/design_doc.md) for details on how these traits
12//! works under the hood.
13mod chars;
14#[cfg(doc)]
15pub mod custom;
16mod encode;
17mod macros;
18mod multi;
19mod niche;
20mod option;
21mod plain;
22mod slices;
23#[cfg(test)]
24pub mod test_utils;
25
26pub mod tuple;
27pub mod tuplevar;
28pub mod vartuple;
29pub use chars::CharULE;
30#[cfg(feature = "alloc")]
31pub use encode::encode_varule_to_box;
32pub use encode::EncodeAsVarULE;
33pub use multi::MultiFieldsULE;
34pub use niche::{NicheBytes, NichedOption, NichedOptionULE};
35pub use option::{OptionULE, OptionVarULE};
36pub use plain::RawBytesULE;
37
38use core::{any, fmt, mem, slice};
39
40/// Fixed-width, byte-aligned data that can be cast to and from a little-endian byte slice.
41///
42/// If you need to implement this trait, consider using [`#[make_ule]`](crate::make_ule) or
43///  [`#[derive(ULE)]`](macro@ULE) instead.
44///
45/// Types that are not fixed-width can implement [`VarULE`] instead.
46///
47/// "ULE" stands for "Unaligned little-endian"
48///
49/// # Safety
50///
51/// Safety checklist for `ULE`:
52///
53/// 1. The type *must not* include any uninitialized or padding bytes.
54/// 2. The type must have an alignment of 1 byte, or it is a ZST that is safe to construct.
55/// 3. The impl of [`ULE::validate_bytes()`] *must* return an error if the given byte slice
56///    would not represent a valid slice of this type.
57/// 4. The impl of [`ULE::validate_bytes()`] *must* return an error if the given byte slice
58///    cannot be used in its entirety (if its length is not a multiple of `size_of::<Self>()`).
59/// 5. All other methods *must* be left with their default impl, or else implemented according to
60///    their respective safety guidelines.
61/// 6. Acknowledge the following note about the equality invariant.
62///
63/// If the ULE type is a struct only containing other ULE types (or other types which satisfy invariants 1 and 2,
64/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(C, packed)]` or `#[repr(transparent)]`.
65///
66/// # Equality invariant
67///
68/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically
69/// equivalent to byte equality on [`Self::slice_as_bytes()`].
70///
71/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not
72/// equal byte equality. In such a case, [`Self::validate_bytes()`] should return an error
73/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and
74/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form
75/// where only a single digit is allowed before `.`.
76///
77/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may
78/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`.
79pub unsafe trait ULE
80where
81    Self: Sized,
82    Self: Copy + 'static,
83{
84    /// Validates a byte slice, `&[u8]`.
85    ///
86    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated.
87    /// If the bytes can be transmuted, *in their entirety*, to a valid slice of `Self`, then `Ok`
88    /// should be returned; otherwise, `Err` should be returned.
89    fn validate_bytes(bytes: &[u8]) -> Result<(), UleError>;
90
91    /// Parses a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime.
92    ///
93    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated,
94    /// and an error should be returned in the same cases as [`Self::validate_bytes()`].
95    ///
96    /// The default implementation executes [`Self::validate_bytes()`] followed by
97    /// [`Self::slice_from_bytes_unchecked`].
98    ///
99    /// Note: The following equality should hold: `bytes.len() % size_of::<Self>() == 0`. This
100    /// means that the returned slice can span the entire byte slice.
101    fn parse_bytes_to_slice(bytes: &[u8]) -> Result<&[Self], UleError> {
102        Self::validate_bytes(bytes)?;
103        debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0);
104        Ok(unsafe { Self::slice_from_bytes_unchecked(bytes) })
105    }
106
107    /// Takes a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime, assuming
108    /// that this byte slice has previously been run through [`Self::parse_bytes_to_slice()`] with
109    /// success.
110    ///
111    /// The default implementation performs a pointer cast to the same region of memory.
112    ///
113    /// # Safety
114    ///
115    /// ## Callers
116    ///
117    /// Callers of this method must take care to ensure that `bytes` was previously passed through
118    /// [`Self::validate_bytes()`] with success (and was not changed since then).
119    ///
120    /// ## Implementors
121    ///
122    /// Implementations of this method may call unsafe functions to cast the pointer to the correct
123    /// type, assuming the "Callers" invariant above.
124    ///
125    /// Keep in mind that `&[Self]` and `&[u8]` may have different lengths.
126    ///
127    /// Safety checklist:
128    ///
129    /// 1. This method *must* return the same result as [`Self::parse_bytes_to_slice()`].
130    /// 2. This method *must* return a slice to the same region of memory as the argument.
131    #[inline]
132    unsafe fn slice_from_bytes_unchecked(bytes: &[u8]) -> &[Self] {
133        let data = bytes.as_ptr();
134        let len = bytes.len() / mem::size_of::<Self>();
135        debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0);
136        core::slice::from_raw_parts(data as *const Self, len)
137    }
138
139    /// Given `&[Self]`, returns a `&[u8]` with the same lifetime.
140    ///
141    /// The default implementation performs a pointer cast to the same region of memory.
142    ///
143    /// # Safety
144    ///
145    /// Implementations of this method should call potentially unsafe functions to cast the
146    /// pointer to the correct type.
147    ///
148    /// Keep in mind that `&[Self]` and `&[u8]` may have different lengths.
149    #[inline]
150    fn slice_as_bytes(slice: &[Self]) -> &[u8] {
151        unsafe {
152            slice::from_raw_parts(slice as *const [Self] as *const u8, mem::size_of_val(slice))
153        }
154    }
155}
156
157/// A trait for any type that has a 1:1 mapping with an unaligned little-endian (ULE) type.
158///
159/// If you need to implement this trait, consider using [`#[make_ule]`](crate::make_ule) instead.
160pub trait AsULE: Copy {
161    /// The ULE type corresponding to `Self`.
162    ///
163    /// Types having infallible conversions from all bit values (Plain Old Data) can use
164    /// `RawBytesULE` with the desired width; for example, `u32` uses `RawBytesULE<4>`.
165    ///
166    /// Types that are not well-defined for all bit values should implement a custom ULE.
167    type ULE: ULE;
168
169    /// Converts from `Self` to `Self::ULE`.
170    ///
171    /// This function may involve byte order swapping (native-endian to little-endian).
172    ///
173    /// For best performance, mark your implementation of this function `#[inline]`.
174    fn to_unaligned(self) -> Self::ULE;
175
176    /// Converts from `Self::ULE` to `Self`.
177    ///
178    /// This function may involve byte order swapping (little-endian to native-endian).
179    ///
180    /// For best performance, mark your implementation of this function `#[inline]`.
181    ///
182    /// # Safety
183    ///
184    /// This function is infallible because bit validation should have occurred when `Self::ULE`
185    /// was first constructed. An implementation may therefore involve an `unsafe{}` block, like
186    /// `from_bytes_unchecked()`.
187    fn from_unaligned(unaligned: Self::ULE) -> Self;
188}
189
190/// A type whose byte sequence equals the byte sequence of its ULE type on
191/// little-endian platforms.
192///
193/// This enables certain performance optimizations, such as
194/// [`ZeroVec::try_from_slice`](crate::ZeroVec::try_from_slice).
195///
196/// # Implementation safety
197///
198/// This trait is safe to implement if the type's ULE (as defined by `impl `[`AsULE`]` for T`)
199/// has an equal byte sequence as the type itself on little-endian platforms; i.e., one where
200/// `*const T` can be cast to a valid `*const T::ULE`.
201pub unsafe trait EqULE: AsULE {}
202
203/// A trait for a type where aligned slices can be cast to unaligned slices.
204///
205/// Auto-implemented on all types implementing [`EqULE`].
206pub trait SliceAsULE
207where
208    Self: AsULE + Sized,
209{
210    /// Converts from `&[Self]` to `&[Self::ULE]` if possible.
211    ///
212    /// In general, this function returns `Some` on little-endian and `None` on big-endian.
213    fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]>;
214}
215
216#[cfg(target_endian = "little")]
217impl<T> SliceAsULE for T
218where
219    T: EqULE,
220{
221    #[inline]
222    fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]> {
223        // This is safe because on little-endian platforms, the byte sequence of &[T]
224        // is equivalent to the byte sequence of &[T::ULE] by the contract of EqULE,
225        // and &[T::ULE] has equal or looser alignment than &[T].
226        let ule_slice =
227            unsafe { core::slice::from_raw_parts(slice.as_ptr() as *const Self::ULE, slice.len()) };
228        Some(ule_slice)
229    }
230}
231
232#[cfg(not(target_endian = "little"))]
233impl<T> SliceAsULE for T
234where
235    T: EqULE,
236{
237    #[inline]
238    fn slice_to_unaligned(_: &[Self]) -> Option<&[Self::ULE]> {
239        None
240    }
241}
242
243/// Variable-width, byte-aligned data that can be cast to and from a little-endian byte slice.
244///
245/// If you need to implement this trait, consider using [`#[make_varule]`](crate::make_varule) or
246///  [`#[derive(VarULE)]`](macro@VarULE) instead.
247///
248/// This trait is mostly for unsized types like `str` and `[T]`. It can be implemented on sized types;
249/// however, it is much more preferable to use [`ULE`] for that purpose. The [`custom`] module contains
250/// additional documentation on how this type can be implemented on custom types.
251///
252/// If deserialization with `VarZeroVec` is desired is recommended to implement `Deserialize` for
253/// `Box<T>` (serde does not do this automatically for unsized `T`).
254///
255/// For convenience it is typically desired to implement [`EncodeAsVarULE`] and [`ZeroFrom`](zerofrom::ZeroFrom)
256/// on some stack type to convert to and from the ULE type efficiently when necessary.
257///
258/// # Safety
259///
260/// Safety checklist for `VarULE`:
261///
262/// 1. The type *must not* include any uninitialized or padding bytes.
263/// 2. The type must have an alignment of 1 byte.
264/// 3. The impl of [`VarULE::validate_bytes()`] *must* return an error if the given byte slice
265///    would not represent a valid slice of this type.
266/// 4. The impl of [`VarULE::validate_bytes()`] *must* return an error if the given byte slice
267///    cannot be used in its entirety.
268/// 5. The impl of [`VarULE::from_bytes_unchecked()`] must produce a reference to the same
269///    underlying data assuming that the given bytes previously passed validation.
270/// 6. All other methods *must* be left with their default impl, or else implemented according to
271///    their respective safety guidelines.
272/// 7. Acknowledge the following note about the equality invariant.
273///
274/// If the ULE type is a struct only containing other ULE/VarULE types (or other types which satisfy invariants 1 and 2,
275/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(C, packed)]` or `#[repr(transparent)]`.
276///
277/// # Equality invariant
278///
279/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically
280/// equivalent to byte equality on [`Self::as_bytes()`].
281///
282/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not
283/// equal byte equality. In such a case, [`Self::validate_bytes()`] should return an error
284/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and
285/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form
286/// where only a single digit is allowed before `.`.
287///
288/// There may also be cases where a `VarULE` has muiltiple canonical forms, such as a faster
289/// version and a smaller version. The cleanest way to handle this case would be separate types.
290/// However, if this is not feasible, then the application should ensure that the data it is
291/// deserializing is in the expected form. For example, if the data is being loaded from an
292/// external source, then requests could carry information about the expected form of the data.
293///
294/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may
295/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`.
296pub unsafe trait VarULE: 'static {
297    /// Validates a byte slice, `&[u8]`.
298    ///
299    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated.
300    /// If the bytes can be transmuted, *in their entirety*, to a valid `&Self`, then `Ok` should
301    /// be returned; otherwise, `Self::Error` should be returned.
302    fn validate_bytes(_bytes: &[u8]) -> Result<(), UleError>;
303
304    /// Parses a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime.
305    ///
306    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated,
307    /// and an error should be returned in the same cases as [`Self::validate_bytes()`].
308    ///
309    /// The default implementation executes [`Self::validate_bytes()`] followed by
310    /// [`Self::from_bytes_unchecked`].
311    ///
312    /// Note: The following equality should hold: `size_of_val(result) == size_of_val(bytes)`,
313    /// where `result` is the successful return value of the method. This means that the return
314    /// value spans the entire byte slice.
315    fn parse_bytes(bytes: &[u8]) -> Result<&Self, UleError> {
316        Self::validate_bytes(bytes)?;
317        let result = unsafe { Self::from_bytes_unchecked(bytes) };
318        debug_assert_eq!(mem::size_of_val(result), mem::size_of_val(bytes));
319        Ok(result)
320    }
321
322    /// Takes a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime, assuming
323    /// that this byte slice has previously been run through [`Self::parse_bytes()`] with
324    /// success.
325    ///
326    /// # Safety
327    ///
328    /// ## Callers
329    ///
330    /// Callers of this method must take care to ensure that `bytes` was previously passed through
331    /// [`Self::validate_bytes()`] with success (and was not changed since then).
332    ///
333    /// ## Implementors
334    ///
335    /// Implementations of this method may call unsafe functions to cast the pointer to the correct
336    /// type, assuming the "Callers" invariant above.
337    ///
338    /// Safety checklist:
339    ///
340    /// 1. This method *must* return the same result as [`Self::parse_bytes()`].
341    /// 2. This method *must* return a slice to the same region of memory as the argument.
342    unsafe fn from_bytes_unchecked(bytes: &[u8]) -> &Self;
343
344    /// Given `&Self`, returns a `&[u8]` with the same lifetime.
345    ///
346    /// The default implementation performs a pointer cast to the same region of memory.
347    ///
348    /// # Safety
349    ///
350    /// Implementations of this method should call potentially unsafe functions to cast the
351    /// pointer to the correct type.
352    #[inline]
353    fn as_bytes(&self) -> &[u8] {
354        unsafe { slice::from_raw_parts(self as *const Self as *const u8, mem::size_of_val(self)) }
355    }
356
357    /// Allocate on the heap as a `Box<T>`
358    #[inline]
359    #[cfg(feature = "alloc")]
360    fn to_boxed(&self) -> alloc::boxed::Box<Self> {
361        use alloc::borrow::ToOwned;
362        use alloc::boxed::Box;
363        use core::alloc::Layout;
364        let bytesvec = self.as_bytes().to_owned().into_boxed_slice();
365        let bytesvec = mem::ManuallyDrop::new(bytesvec);
366        unsafe {
367            // Get the pointer representation
368            let ptr: *mut Self = Self::from_bytes_unchecked(&bytesvec) as *const Self as *mut Self;
369            assert_eq!(Layout::for_value(&*ptr), Layout::for_value(&**bytesvec));
370            // Transmute the pointer to an owned pointer
371            Box::from_raw(ptr)
372        }
373    }
374}
375
376// Proc macro reexports
377//
378// These exist so that our docs can use intra-doc links.
379// Due to quirks of how rustdoc does documentation on reexports, these must be in this module and not reexported from
380// a submodule
381
382/// Custom derive for [`ULE`].
383///
384/// This can be attached to [`Copy`] structs containing only [`ULE`] types.
385///
386/// Most of the time, it is recommended one use [`#[make_ule]`](crate::make_ule) instead of defining
387/// a custom ULE type.
388#[cfg(feature = "derive")]
389pub use zerovec_derive::ULE;
390
391/// Custom derive for [`VarULE`]
392///
393/// This can be attached to structs containing only [`ULE`] types with one [`VarULE`] type at the end.
394///
395/// Most of the time, it is recommended one use [`#[make_varule]`](crate::make_varule) instead of defining
396/// a custom [`VarULE`] type.
397#[cfg(feature = "derive")]
398pub use zerovec_derive::VarULE;
399
400/// An error type to be used for decoding slices of ULE types
401#[derive(Copy, Clone, Debug, PartialEq, Eq)]
402#[non_exhaustive]
403pub enum UleError {
404    /// Attempted to parse a buffer into a slice of the given ULE type but its
405    /// length was not compatible.
406    ///
407    /// Typically created by a [`ULE`] impl via [`UleError::length()`].
408    ///
409    /// [`ULE`]: crate::ule::ULE
410    InvalidLength { ty: &'static str, len: usize },
411    /// The byte sequence provided for `ty` failed to parse correctly in the
412    /// given ULE type.
413    ///
414    /// Typically created by a [`ULE`] impl via [`UleError::parse()`].
415    ///
416    /// [`ULE`]: crate::ule::ULE
417    ParseError { ty: &'static str },
418}
419
420impl fmt::Display for UleError {
421    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
422        match *self {
423            UleError::InvalidLength { ty, len } => {
424                write!(f, "Invalid length {len} for slice of type {ty}")
425            }
426            UleError::ParseError { ty } => {
427                write!(f, "Could not parse bytes to slice of type {ty}")
428            }
429        }
430    }
431}
432
433impl UleError {
434    /// Construct a parse error for the given type
435    pub fn parse<T: ?Sized + 'static>() -> UleError {
436        UleError::ParseError {
437            ty: any::type_name::<T>(),
438        }
439    }
440
441    /// Construct an "invalid length" error for the given type and length
442    pub fn length<T: ?Sized + 'static>(len: usize) -> UleError {
443        UleError::InvalidLength {
444            ty: any::type_name::<T>(),
445            len,
446        }
447    }
448}
449
450impl core::error::Error for UleError {}