zerovec/varzerovec/components.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
use crate::ule::*;
use alloc::boxed::Box;
use alloc::format;
use alloc::string::String;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::convert::TryFrom;
use core::marker::PhantomData;
use core::ops::Range;
// Also used by owned.rs
pub(super) const LENGTH_WIDTH: usize = 4;
pub(super) const METADATA_WIDTH: usize = 0;
pub(super) const MAX_LENGTH: usize = u32::MAX as usize;
pub(super) const MAX_INDEX: usize = u32::MAX as usize;
/// This trait allows switching between different possible internal
/// representations of VarZeroVec.
///
/// Currently this crate supports two formats: [`Index16`] and [`Index32`],
/// with [`Index16`] being the default for all [`VarZeroVec`](super::VarZeroVec)
/// types unless explicitly specified otherwise.
///
/// Do not implement this trait, its internals may be changed in the future,
/// and all of its associated items are hidden from the docs.
#[allow(clippy::missing_safety_doc)] // no safety section for you, don't implement this trait period
pub unsafe trait VarZeroVecFormat: 'static + Sized {
#[doc(hidden)]
const INDEX_WIDTH: usize;
#[doc(hidden)]
const MAX_VALUE: u32;
/// This is always `RawBytesULE<Self::INDEX_WIDTH>` however
/// Rust does not currently support using associated constants in const
/// generics
#[doc(hidden)]
type RawBytes: ULE;
// various conversions because RawBytes is an associated constant now
#[doc(hidden)]
fn rawbytes_to_usize(raw: Self::RawBytes) -> usize;
#[doc(hidden)]
fn usize_to_rawbytes(u: usize) -> Self::RawBytes;
#[doc(hidden)]
fn rawbytes_from_byte_slice_unchecked_mut(bytes: &mut [u8]) -> &mut [Self::RawBytes];
}
/// This is a [`VarZeroVecFormat`] that stores u16s in the index array.
/// Will have a smaller data size, but it's more likely for larger arrays
/// to be unrepresentable (and error on construction)
///
/// This is the default index size used by all [`VarZeroVec`](super::VarZeroVec) types.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(clippy::exhaustive_structs)] // marker
pub struct Index16;
/// This is a [`VarZeroVecFormat`] that stores u32s in the index array.
/// Will have a larger data size, but will support large arrays without
/// problems.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(clippy::exhaustive_structs)] // marker
pub struct Index32;
unsafe impl VarZeroVecFormat for Index16 {
const INDEX_WIDTH: usize = 2;
const MAX_VALUE: u32 = u16::MAX as u32;
type RawBytes = RawBytesULE<2>;
#[inline]
fn rawbytes_to_usize(raw: Self::RawBytes) -> usize {
raw.as_unsigned_int() as usize
}
#[inline]
fn usize_to_rawbytes(u: usize) -> Self::RawBytes {
(u as u16).to_unaligned()
}
#[inline]
fn rawbytes_from_byte_slice_unchecked_mut(bytes: &mut [u8]) -> &mut [Self::RawBytes] {
Self::RawBytes::from_byte_slice_unchecked_mut(bytes)
}
}
unsafe impl VarZeroVecFormat for Index32 {
const INDEX_WIDTH: usize = 4;
const MAX_VALUE: u32 = u32::MAX;
type RawBytes = RawBytesULE<4>;
#[inline]
fn rawbytes_to_usize(raw: Self::RawBytes) -> usize {
raw.as_unsigned_int() as usize
}
#[inline]
fn usize_to_rawbytes(u: usize) -> Self::RawBytes {
(u as u32).to_unaligned()
}
#[inline]
fn rawbytes_from_byte_slice_unchecked_mut(bytes: &mut [u8]) -> &mut [Self::RawBytes] {
Self::RawBytes::from_byte_slice_unchecked_mut(bytes)
}
}
/// A more parsed version of `VarZeroSlice`. This type is where most of the VarZeroVec
/// internal representation code lies.
///
/// This is *basically* an `&'a [u8]` to a zero copy buffer, but split out into
/// the buffer components. Logically this is capable of behaving as
/// a `&'a [T::VarULE]`, but since `T::VarULE` is unsized that type does not actually
/// exist.
///
/// See [`VarZeroVecComponents::parse_byte_slice()`] for information on the internal invariants involved
#[derive(Debug)]
pub struct VarZeroVecComponents<'a, T: ?Sized, F> {
/// The number of elements
len: u32,
/// The list of indices into the `things` slice
indices: &'a [u8],
/// The contiguous list of `T::VarULE`s
things: &'a [u8],
/// The original slice this was constructed from
entire_slice: &'a [u8],
marker: PhantomData<(&'a T, F)>,
}
// #[derive()] won't work here since we do not want it to be
// bound on T: Copy
impl<'a, T: ?Sized, F> Copy for VarZeroVecComponents<'a, T, F> {}
impl<'a, T: ?Sized, F> Clone for VarZeroVecComponents<'a, T, F> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, T: VarULE + ?Sized, F> Default for VarZeroVecComponents<'a, T, F> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<'a, T: VarULE + ?Sized, F> VarZeroVecComponents<'a, T, F> {
#[inline]
pub fn new() -> Self {
Self {
len: 0,
indices: &[],
things: &[],
entire_slice: &[],
marker: PhantomData,
}
}
}
impl<'a, T: VarULE + ?Sized, F: VarZeroVecFormat> VarZeroVecComponents<'a, T, F> {
/// Construct a new VarZeroVecComponents, checking invariants about the overall buffer size:
///
/// - There must be either zero or at least four bytes (if four, this is the "length" parsed as a usize)
/// - There must be at least `4*length + 4` bytes total, to form the array `indices` of indices
/// - `indices[i]..indices[i+1]` must index into a valid section of
/// `things`, such that it parses to a `T::VarULE`
/// - `indices[len - 1]..things.len()` must index into a valid section of
/// `things`, such that it parses to a `T::VarULE`
#[inline]
pub fn parse_byte_slice(slice: &'a [u8]) -> Result<Self, ZeroVecError> {
// The empty VZV is special-cased to the empty slice
if slice.is_empty() {
return Ok(VarZeroVecComponents {
len: 0,
indices: &[],
things: &[],
entire_slice: slice,
marker: PhantomData,
});
}
let len_bytes = slice
.get(0..LENGTH_WIDTH)
.ok_or(ZeroVecError::VarZeroVecFormatError)?;
let len_ule = RawBytesULE::<LENGTH_WIDTH>::parse_byte_slice(len_bytes)
.map_err(|_| ZeroVecError::VarZeroVecFormatError)?;
let len = len_ule
.first()
.ok_or(ZeroVecError::VarZeroVecFormatError)?
.as_unsigned_int();
let indices_bytes = slice
.get(
LENGTH_WIDTH + METADATA_WIDTH
..LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * (len as usize),
)
.ok_or(ZeroVecError::VarZeroVecFormatError)?;
let things = slice
.get(F::INDEX_WIDTH * (len as usize) + LENGTH_WIDTH + METADATA_WIDTH..)
.ok_or(ZeroVecError::VarZeroVecFormatError)?;
let borrowed = VarZeroVecComponents {
len,
indices: indices_bytes,
things,
entire_slice: slice,
marker: PhantomData,
};
borrowed.check_indices_and_things()?;
Ok(borrowed)
}
/// Construct a [`VarZeroVecComponents`] from a byte slice that has previously
/// successfully returned a [`VarZeroVecComponents`] when passed to
/// [`VarZeroVecComponents::parse_byte_slice()`]. Will return the same
/// object as one would get from calling [`VarZeroVecComponents::parse_byte_slice()`].
///
/// # Safety
/// The bytes must have previously successfully run through
/// [`VarZeroVecComponents::parse_byte_slice()`]
pub unsafe fn from_bytes_unchecked(slice: &'a [u8]) -> Self {
// The empty VZV is special-cased to the empty slice
if slice.is_empty() {
return VarZeroVecComponents {
len: 0,
indices: &[],
things: &[],
entire_slice: slice,
marker: PhantomData,
};
}
let len_bytes = slice.get_unchecked(0..LENGTH_WIDTH);
let len_ule = RawBytesULE::<LENGTH_WIDTH>::from_byte_slice_unchecked(len_bytes);
let len = len_ule.get_unchecked(0).as_unsigned_int();
let indices_bytes = slice.get_unchecked(
LENGTH_WIDTH + METADATA_WIDTH
..LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * (len as usize),
);
let things =
slice.get_unchecked(LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * (len as usize)..);
VarZeroVecComponents {
len,
indices: indices_bytes,
things,
entire_slice: slice,
marker: PhantomData,
}
}
/// Get the number of elements in this vector
#[inline]
pub fn len(self) -> usize {
self.len as usize
}
/// Returns `true` if the vector contains no elements.
#[inline]
pub fn is_empty(self) -> bool {
self.indices.is_empty()
}
/// Get the idx'th element out of this slice. Returns `None` if out of bounds.
#[inline]
pub fn get(self, idx: usize) -> Option<&'a T> {
if idx >= self.len() {
return None;
}
Some(unsafe { self.get_unchecked(idx) })
}
/// Get the idx'th element out of this slice. Does not bounds check.
///
/// Safety:
/// - `idx` must be in bounds (`idx < self.len()`)
#[inline]
pub(crate) unsafe fn get_unchecked(self, idx: usize) -> &'a T {
let range = self.get_things_range(idx);
let things_slice = self.things.get_unchecked(range);
T::from_byte_slice_unchecked(things_slice)
}
/// Get the range in `things` for the element at `idx`. Does not bounds check.
///
/// Safety:
/// - `idx` must be in bounds (`idx < self.len()`)
#[inline]
unsafe fn get_things_range(self, idx: usize) -> Range<usize> {
let start = F::rawbytes_to_usize(*self.indices_slice().get_unchecked(idx));
let end = if idx + 1 == self.len() {
self.things.len()
} else {
F::rawbytes_to_usize(*self.indices_slice().get_unchecked(idx + 1))
};
debug_assert!(start <= end);
start..end
}
/// Get the range in `entire_slice` for the element at `idx`. Does not bounds check.
///
/// Safety:
/// - `idx` must be in bounds (`idx < self.len()`)
#[inline]
pub(crate) unsafe fn get_range(self, idx: usize) -> Range<usize> {
let range = self.get_things_range(idx);
let offset = (self.things as *const [u8] as *const u8)
.offset_from(self.entire_slice as *const [u8] as *const u8)
as usize;
range.start + offset..range.end + offset
}
/// Check the internal invariants of VarZeroVecComponents:
///
/// - `indices[i]..indices[i+1]` must index into a valid section of
/// `things`, such that it parses to a `T::VarULE`
/// - `indices[len - 1]..things.len()` must index into a valid section of
/// `things`, such that it parses to a `T::VarULE`
/// - `indices` is monotonically increasing
///
/// This method is NOT allowed to call any other methods on VarZeroVecComponents since all other methods
/// assume that the slice has been passed through check_indices_and_things
#[inline]
#[allow(clippy::len_zero)] // more explicit to enforce safety invariants
fn check_indices_and_things(self) -> Result<(), ZeroVecError> {
assert_eq!(self.len(), self.indices_slice().len());
if self.len() == 0 {
if self.things.len() > 0 {
return Err(ZeroVecError::VarZeroVecFormatError);
} else {
return Ok(());
}
}
// Safety: i is in bounds (assertion above)
let mut start = F::rawbytes_to_usize(unsafe { *self.indices_slice().get_unchecked(0) });
if start != 0 {
return Err(ZeroVecError::VarZeroVecFormatError);
}
for i in 0..self.len() {
let end = if i == self.len() - 1 {
self.things.len()
} else {
// Safety: i+1 is in bounds (assertion above)
F::rawbytes_to_usize(unsafe { *self.indices_slice().get_unchecked(i + 1) })
};
if start > end {
return Err(ZeroVecError::VarZeroVecFormatError);
}
if end > self.things.len() {
return Err(ZeroVecError::VarZeroVecFormatError);
}
// Safety: start..end is a valid range in self.things
let bytes = unsafe { self.things.get_unchecked(start..end) };
T::parse_byte_slice(bytes)?;
start = end;
}
Ok(())
}
/// Create an iterator over the Ts contained in VarZeroVecComponents
#[inline]
pub fn iter(self) -> impl Iterator<Item = &'a T> {
self.indices_slice()
.iter()
.copied()
.map(F::rawbytes_to_usize)
.zip(
self.indices_slice()
.iter()
.copied()
.map(F::rawbytes_to_usize)
.skip(1)
.chain([self.things.len()]),
)
.map(move |(start, end)| unsafe { self.things.get_unchecked(start..end) })
.map(|bytes| unsafe { T::from_byte_slice_unchecked(bytes) })
}
pub fn to_vec(self) -> Vec<Box<T>> {
self.iter().map(T::to_boxed).collect()
}
#[inline]
fn indices_slice(&self) -> &'a [F::RawBytes] {
unsafe { F::RawBytes::from_byte_slice_unchecked(self.indices) }
}
// Dump a debuggable representation of this type
#[allow(unused)] // useful for debugging
pub(crate) fn dump(&self) -> String {
let indices = self
.indices_slice()
.iter()
.copied()
.map(F::rawbytes_to_usize)
.collect::<Vec<_>>();
format!("VarZeroVecComponents {{ indices: {indices:?} }}")
}
}
impl<'a, T, F> VarZeroVecComponents<'a, T, F>
where
T: VarULE,
T: ?Sized,
T: Ord,
F: VarZeroVecFormat,
{
/// Binary searches a sorted `VarZeroVecComponents<T>` for the given element. For more information, see
/// the primitive function [`binary_search`](slice::binary_search).
pub fn binary_search(&self, needle: &T) -> Result<usize, usize> {
self.binary_search_impl(|probe| probe.cmp(needle), self.indices_slice())
}
pub fn binary_search_in_range(
&self,
needle: &T,
range: Range<usize>,
) -> Option<Result<usize, usize>> {
let indices_slice = self.indices_slice().get(range)?;
Some(self.binary_search_impl(|probe| probe.cmp(needle), indices_slice))
}
}
impl<'a, T, F> VarZeroVecComponents<'a, T, F>
where
T: VarULE,
T: ?Sized,
F: VarZeroVecFormat,
{
/// Binary searches a sorted `VarZeroVecComponents<T>` for the given predicate. For more information, see
/// the primitive function [`binary_search_by`](slice::binary_search_by).
pub fn binary_search_by(&self, predicate: impl FnMut(&T) -> Ordering) -> Result<usize, usize> {
self.binary_search_impl(predicate, self.indices_slice())
}
pub fn binary_search_in_range_by(
&self,
predicate: impl FnMut(&T) -> Ordering,
range: Range<usize>,
) -> Option<Result<usize, usize>> {
let indices_slice = self.indices_slice().get(range)?;
Some(self.binary_search_impl(predicate, indices_slice))
}
/// Binary searches a sorted `VarZeroVecComponents<T>` with the given predicate. For more information, see
/// the primitive function [`binary_search`](slice::binary_search).
fn binary_search_impl(
&self,
mut predicate: impl FnMut(&T) -> Ordering,
indices_slice: &[F::RawBytes],
) -> Result<usize, usize> {
// This code is an absolute atrocity. This code is not a place of honor. This
// code is known to the State of California to cause cancer.
//
// Unfortunately, the stdlib's `binary_search*` functions can only operate on slices.
// We do not have a slice. We have something we can .get() and index on, but that is not
// a slice.
//
// The `binary_search*` functions also do not have a variant where they give you the element's
// index, which we could otherwise use to directly index `self`.
// We do have `self.indices`, but these are indices into a byte buffer, which cannot in
// isolation be used to recoup the logical index of the element they refer to.
//
// However, `binary_search_by()` provides references to the elements of the slice being iterated.
// Since the layout of Rust slices is well-defined, we can do pointer arithmetic on these references
// to obtain the index being used by the search.
//
// It's worth noting that the slice we choose to search is irrelevant, as long as it has the appropriate
// length. `self.indices` is defined to have length `self.len()`, so it is convenient to use
// here and does not require additional allocations.
//
// The alternative to doing this is to implement our own binary search. This is significantly less fun.
// Note: We always use zero_index relative to the whole indices array, even if we are
// only searching a subslice of it.
let zero_index = self.indices.as_ptr() as *const _ as usize;
indices_slice.binary_search_by(|probe: &_| {
// `self.indices` is a vec of unaligned F::INDEX_WIDTH values, so we divide by F::INDEX_WIDTH
// to get the actual index
let index = (probe as *const _ as usize - zero_index) / F::INDEX_WIDTH;
// safety: we know this is in bounds
let actual_probe = unsafe { self.get_unchecked(index) };
predicate(actual_probe)
})
}
}
/// Collects the bytes for a VarZeroSlice into a Vec.
pub fn get_serializable_bytes_non_empty<T, A, F>(elements: &[A]) -> Option<Vec<u8>>
where
T: VarULE + ?Sized,
A: EncodeAsVarULE<T>,
F: VarZeroVecFormat,
{
debug_assert!(!elements.is_empty());
let len = compute_serializable_len::<T, A, F>(elements)?;
debug_assert!(len >= LENGTH_WIDTH as u32);
let mut output: Vec<u8> = alloc::vec![0; len as usize];
write_serializable_bytes::<T, A, F>(elements, &mut output);
Some(output)
}
/// Writes the bytes for a VarZeroSlice into an output buffer.
///
/// Every byte in the buffer will be initialized after calling this function.
///
/// # Panics
///
/// Panics if the buffer is not exactly the correct length.
pub fn write_serializable_bytes<T, A, F>(elements: &[A], output: &mut [u8])
where
T: VarULE + ?Sized,
A: EncodeAsVarULE<T>,
F: VarZeroVecFormat,
{
assert!(elements.len() <= MAX_LENGTH);
let num_elements_bytes = elements.len().to_le_bytes();
#[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
output[0..LENGTH_WIDTH].copy_from_slice(&num_elements_bytes[0..LENGTH_WIDTH]);
// idx_offset = offset from the start of the buffer for the next index
let mut idx_offset: usize = LENGTH_WIDTH + METADATA_WIDTH;
// first_dat_offset = offset from the start of the buffer of the first data block
let first_dat_offset: usize = idx_offset + elements.len() * F::INDEX_WIDTH;
// dat_offset = offset from the start of the buffer of the next data block
let mut dat_offset: usize = first_dat_offset;
for element in elements.iter() {
let element_len = element.encode_var_ule_len();
let idx_limit = idx_offset + F::INDEX_WIDTH;
#[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
let idx_slice = &mut output[idx_offset..idx_limit];
// VZV expects data offsets to be stored relative to the first data block
let idx = dat_offset - first_dat_offset;
assert!(idx <= MAX_INDEX);
#[allow(clippy::indexing_slicing)] // this function is explicitly panicky
idx_slice.copy_from_slice(&idx.to_le_bytes()[..F::INDEX_WIDTH]);
let dat_limit = dat_offset + element_len;
#[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
let dat_slice = &mut output[dat_offset..dat_limit];
element.encode_var_ule_write(dat_slice);
debug_assert_eq!(T::validate_byte_slice(dat_slice), Ok(()));
idx_offset = idx_limit;
dat_offset = dat_limit;
}
debug_assert_eq!(
idx_offset,
LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * elements.len()
);
assert_eq!(dat_offset, output.len());
}
pub fn compute_serializable_len<T, A, F>(elements: &[A]) -> Option<u32>
where
T: VarULE + ?Sized,
A: EncodeAsVarULE<T>,
F: VarZeroVecFormat,
{
let idx_len: u32 = u32::try_from(elements.len())
.ok()?
.checked_mul(F::INDEX_WIDTH as u32)?
.checked_add(LENGTH_WIDTH as u32)?
.checked_add(METADATA_WIDTH as u32)?;
let data_len: u32 = elements
.iter()
.map(|v| u32::try_from(v.encode_var_ule_len()).ok())
.try_fold(0u32, |s, v| s.checked_add(v?))?;
let ret = idx_len.checked_add(data_len);
if let Some(r) = ret {
if r >= F::MAX_VALUE {
return None;
}
}
ret
}