zerovec/varzerovec/
components.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use crate::ule::*;
use alloc::boxed::Box;
use alloc::format;
use alloc::string::String;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::convert::TryFrom;
use core::marker::PhantomData;
use core::ops::Range;

// Also used by owned.rs
pub(super) const LENGTH_WIDTH: usize = 4;
pub(super) const METADATA_WIDTH: usize = 0;
pub(super) const MAX_LENGTH: usize = u32::MAX as usize;
pub(super) const MAX_INDEX: usize = u32::MAX as usize;

/// This trait allows switching between different possible internal
/// representations of VarZeroVec.
///
/// Currently this crate supports two formats: [`Index16`] and [`Index32`],
/// with [`Index16`] being the default for all [`VarZeroVec`](super::VarZeroVec)
/// types unless explicitly specified otherwise.
///
/// Do not implement this trait, its internals may be changed in the future,
/// and all of its associated items are hidden from the docs.
#[allow(clippy::missing_safety_doc)] // no safety section for you, don't implement this trait period
pub unsafe trait VarZeroVecFormat: 'static + Sized {
    #[doc(hidden)]
    const INDEX_WIDTH: usize;
    #[doc(hidden)]
    const MAX_VALUE: u32;
    /// This is always `RawBytesULE<Self::INDEX_WIDTH>` however
    /// Rust does not currently support using associated constants in const
    /// generics
    #[doc(hidden)]
    type RawBytes: ULE;

    // various conversions because RawBytes is an associated constant now
    #[doc(hidden)]
    fn rawbytes_to_usize(raw: Self::RawBytes) -> usize;
    #[doc(hidden)]
    fn usize_to_rawbytes(u: usize) -> Self::RawBytes;

    #[doc(hidden)]
    fn rawbytes_from_byte_slice_unchecked_mut(bytes: &mut [u8]) -> &mut [Self::RawBytes];
}

/// This is a [`VarZeroVecFormat`] that stores u16s in the index array.
/// Will have a smaller data size, but it's more likely for larger arrays
/// to be unrepresentable (and error on construction)
///
/// This is the default index size used by all [`VarZeroVec`](super::VarZeroVec) types.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(clippy::exhaustive_structs)] // marker
pub struct Index16;

/// This is a [`VarZeroVecFormat`] that stores u32s in the index array.
/// Will have a larger data size, but will support large arrays without
/// problems.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(clippy::exhaustive_structs)] // marker
pub struct Index32;

unsafe impl VarZeroVecFormat for Index16 {
    const INDEX_WIDTH: usize = 2;
    const MAX_VALUE: u32 = u16::MAX as u32;
    type RawBytes = RawBytesULE<2>;
    #[inline]
    fn rawbytes_to_usize(raw: Self::RawBytes) -> usize {
        raw.as_unsigned_int() as usize
    }
    #[inline]
    fn usize_to_rawbytes(u: usize) -> Self::RawBytes {
        (u as u16).to_unaligned()
    }
    #[inline]
    fn rawbytes_from_byte_slice_unchecked_mut(bytes: &mut [u8]) -> &mut [Self::RawBytes] {
        Self::RawBytes::from_byte_slice_unchecked_mut(bytes)
    }
}

unsafe impl VarZeroVecFormat for Index32 {
    const INDEX_WIDTH: usize = 4;
    const MAX_VALUE: u32 = u32::MAX;
    type RawBytes = RawBytesULE<4>;
    #[inline]
    fn rawbytes_to_usize(raw: Self::RawBytes) -> usize {
        raw.as_unsigned_int() as usize
    }
    #[inline]
    fn usize_to_rawbytes(u: usize) -> Self::RawBytes {
        (u as u32).to_unaligned()
    }
    #[inline]
    fn rawbytes_from_byte_slice_unchecked_mut(bytes: &mut [u8]) -> &mut [Self::RawBytes] {
        Self::RawBytes::from_byte_slice_unchecked_mut(bytes)
    }
}

/// A more parsed version of `VarZeroSlice`. This type is where most of the VarZeroVec
/// internal representation code lies.
///
/// This is *basically* an `&'a [u8]` to a zero copy buffer, but split out into
/// the buffer components. Logically this is capable of behaving as
/// a `&'a [T::VarULE]`, but since `T::VarULE` is unsized that type does not actually
/// exist.
///
/// See [`VarZeroVecComponents::parse_byte_slice()`] for information on the internal invariants involved
#[derive(Debug)]
pub struct VarZeroVecComponents<'a, T: ?Sized, F> {
    /// The number of elements
    len: u32,
    /// The list of indices into the `things` slice
    indices: &'a [u8],
    /// The contiguous list of `T::VarULE`s
    things: &'a [u8],
    /// The original slice this was constructed from
    entire_slice: &'a [u8],
    marker: PhantomData<(&'a T, F)>,
}

// #[derive()] won't work here since we do not want it to be
// bound on T: Copy
impl<'a, T: ?Sized, F> Copy for VarZeroVecComponents<'a, T, F> {}
impl<'a, T: ?Sized, F> Clone for VarZeroVecComponents<'a, T, F> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, T: VarULE + ?Sized, F> Default for VarZeroVecComponents<'a, T, F> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, T: VarULE + ?Sized, F> VarZeroVecComponents<'a, T, F> {
    #[inline]
    pub fn new() -> Self {
        Self {
            len: 0,
            indices: &[],
            things: &[],
            entire_slice: &[],
            marker: PhantomData,
        }
    }
}
impl<'a, T: VarULE + ?Sized, F: VarZeroVecFormat> VarZeroVecComponents<'a, T, F> {
    /// Construct a new VarZeroVecComponents, checking invariants about the overall buffer size:
    ///
    /// - There must be either zero or at least four bytes (if four, this is the "length" parsed as a usize)
    /// - There must be at least `4*length + 4` bytes total, to form the array `indices` of indices
    /// - `indices[i]..indices[i+1]` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    /// - `indices[len - 1]..things.len()` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    #[inline]
    pub fn parse_byte_slice(slice: &'a [u8]) -> Result<Self, ZeroVecError> {
        // The empty VZV is special-cased to the empty slice
        if slice.is_empty() {
            return Ok(VarZeroVecComponents {
                len: 0,
                indices: &[],
                things: &[],
                entire_slice: slice,
                marker: PhantomData,
            });
        }
        let len_bytes = slice
            .get(0..LENGTH_WIDTH)
            .ok_or(ZeroVecError::VarZeroVecFormatError)?;
        let len_ule = RawBytesULE::<LENGTH_WIDTH>::parse_byte_slice(len_bytes)
            .map_err(|_| ZeroVecError::VarZeroVecFormatError)?;

        let len = len_ule
            .first()
            .ok_or(ZeroVecError::VarZeroVecFormatError)?
            .as_unsigned_int();
        let indices_bytes = slice
            .get(
                LENGTH_WIDTH + METADATA_WIDTH
                    ..LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * (len as usize),
            )
            .ok_or(ZeroVecError::VarZeroVecFormatError)?;
        let things = slice
            .get(F::INDEX_WIDTH * (len as usize) + LENGTH_WIDTH + METADATA_WIDTH..)
            .ok_or(ZeroVecError::VarZeroVecFormatError)?;

        let borrowed = VarZeroVecComponents {
            len,
            indices: indices_bytes,
            things,
            entire_slice: slice,
            marker: PhantomData,
        };

        borrowed.check_indices_and_things()?;

        Ok(borrowed)
    }

    /// Construct a [`VarZeroVecComponents`] from a byte slice that has previously
    /// successfully returned a [`VarZeroVecComponents`] when passed to
    /// [`VarZeroVecComponents::parse_byte_slice()`]. Will return the same
    /// object as one would get from calling [`VarZeroVecComponents::parse_byte_slice()`].
    ///
    /// # Safety
    /// The bytes must have previously successfully run through
    /// [`VarZeroVecComponents::parse_byte_slice()`]
    pub unsafe fn from_bytes_unchecked(slice: &'a [u8]) -> Self {
        // The empty VZV is special-cased to the empty slice
        if slice.is_empty() {
            return VarZeroVecComponents {
                len: 0,
                indices: &[],
                things: &[],
                entire_slice: slice,
                marker: PhantomData,
            };
        }
        let len_bytes = slice.get_unchecked(0..LENGTH_WIDTH);
        let len_ule = RawBytesULE::<LENGTH_WIDTH>::from_byte_slice_unchecked(len_bytes);

        let len = len_ule.get_unchecked(0).as_unsigned_int();
        let indices_bytes = slice.get_unchecked(
            LENGTH_WIDTH + METADATA_WIDTH
                ..LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * (len as usize),
        );
        let things =
            slice.get_unchecked(LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * (len as usize)..);

        VarZeroVecComponents {
            len,
            indices: indices_bytes,
            things,
            entire_slice: slice,
            marker: PhantomData,
        }
    }

    /// Get the number of elements in this vector
    #[inline]
    pub fn len(self) -> usize {
        self.len as usize
    }

    /// Returns `true` if the vector contains no elements.
    #[inline]
    pub fn is_empty(self) -> bool {
        self.indices.is_empty()
    }

    /// Get the idx'th element out of this slice. Returns `None` if out of bounds.
    #[inline]
    pub fn get(self, idx: usize) -> Option<&'a T> {
        if idx >= self.len() {
            return None;
        }
        Some(unsafe { self.get_unchecked(idx) })
    }

    /// Get the idx'th element out of this slice. Does not bounds check.
    ///
    /// Safety:
    /// - `idx` must be in bounds (`idx < self.len()`)
    #[inline]
    pub(crate) unsafe fn get_unchecked(self, idx: usize) -> &'a T {
        let range = self.get_things_range(idx);
        let things_slice = self.things.get_unchecked(range);
        T::from_byte_slice_unchecked(things_slice)
    }

    /// Get the range in `things` for the element at `idx`. Does not bounds check.
    ///
    /// Safety:
    /// - `idx` must be in bounds (`idx < self.len()`)
    #[inline]
    unsafe fn get_things_range(self, idx: usize) -> Range<usize> {
        let start = F::rawbytes_to_usize(*self.indices_slice().get_unchecked(idx));
        let end = if idx + 1 == self.len() {
            self.things.len()
        } else {
            F::rawbytes_to_usize(*self.indices_slice().get_unchecked(idx + 1))
        };
        debug_assert!(start <= end);
        start..end
    }

    /// Get the range in `entire_slice` for the element at `idx`. Does not bounds check.
    ///
    /// Safety:
    /// - `idx` must be in bounds (`idx < self.len()`)
    #[inline]
    pub(crate) unsafe fn get_range(self, idx: usize) -> Range<usize> {
        let range = self.get_things_range(idx);
        let offset = (self.things as *const [u8] as *const u8)
            .offset_from(self.entire_slice as *const [u8] as *const u8)
            as usize;
        range.start + offset..range.end + offset
    }

    /// Check the internal invariants of VarZeroVecComponents:
    ///
    /// - `indices[i]..indices[i+1]` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    /// - `indices[len - 1]..things.len()` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    /// - `indices` is monotonically increasing
    ///
    /// This method is NOT allowed to call any other methods on VarZeroVecComponents since all other methods
    /// assume that the slice has been passed through check_indices_and_things
    #[inline]
    #[allow(clippy::len_zero)] // more explicit to enforce safety invariants
    fn check_indices_and_things(self) -> Result<(), ZeroVecError> {
        assert_eq!(self.len(), self.indices_slice().len());
        if self.len() == 0 {
            if self.things.len() > 0 {
                return Err(ZeroVecError::VarZeroVecFormatError);
            } else {
                return Ok(());
            }
        }
        // Safety: i is in bounds (assertion above)
        let mut start = F::rawbytes_to_usize(unsafe { *self.indices_slice().get_unchecked(0) });
        if start != 0 {
            return Err(ZeroVecError::VarZeroVecFormatError);
        }
        for i in 0..self.len() {
            let end = if i == self.len() - 1 {
                self.things.len()
            } else {
                // Safety: i+1 is in bounds (assertion above)
                F::rawbytes_to_usize(unsafe { *self.indices_slice().get_unchecked(i + 1) })
            };
            if start > end {
                return Err(ZeroVecError::VarZeroVecFormatError);
            }
            if end > self.things.len() {
                return Err(ZeroVecError::VarZeroVecFormatError);
            }
            // Safety: start..end is a valid range in self.things
            let bytes = unsafe { self.things.get_unchecked(start..end) };
            T::parse_byte_slice(bytes)?;
            start = end;
        }
        Ok(())
    }

    /// Create an iterator over the Ts contained in VarZeroVecComponents
    #[inline]
    pub fn iter(self) -> impl Iterator<Item = &'a T> {
        self.indices_slice()
            .iter()
            .copied()
            .map(F::rawbytes_to_usize)
            .zip(
                self.indices_slice()
                    .iter()
                    .copied()
                    .map(F::rawbytes_to_usize)
                    .skip(1)
                    .chain([self.things.len()]),
            )
            .map(move |(start, end)| unsafe { self.things.get_unchecked(start..end) })
            .map(|bytes| unsafe { T::from_byte_slice_unchecked(bytes) })
    }

    pub fn to_vec(self) -> Vec<Box<T>> {
        self.iter().map(T::to_boxed).collect()
    }

    #[inline]
    fn indices_slice(&self) -> &'a [F::RawBytes] {
        unsafe { F::RawBytes::from_byte_slice_unchecked(self.indices) }
    }

    // Dump a debuggable representation of this type
    #[allow(unused)] // useful for debugging
    pub(crate) fn dump(&self) -> String {
        let indices = self
            .indices_slice()
            .iter()
            .copied()
            .map(F::rawbytes_to_usize)
            .collect::<Vec<_>>();
        format!("VarZeroVecComponents {{ indices: {indices:?} }}")
    }
}

impl<'a, T, F> VarZeroVecComponents<'a, T, F>
where
    T: VarULE,
    T: ?Sized,
    T: Ord,
    F: VarZeroVecFormat,
{
    /// Binary searches a sorted `VarZeroVecComponents<T>` for the given element. For more information, see
    /// the primitive function [`binary_search`](slice::binary_search).
    pub fn binary_search(&self, needle: &T) -> Result<usize, usize> {
        self.binary_search_impl(|probe| probe.cmp(needle), self.indices_slice())
    }

    pub fn binary_search_in_range(
        &self,
        needle: &T,
        range: Range<usize>,
    ) -> Option<Result<usize, usize>> {
        let indices_slice = self.indices_slice().get(range)?;
        Some(self.binary_search_impl(|probe| probe.cmp(needle), indices_slice))
    }
}

impl<'a, T, F> VarZeroVecComponents<'a, T, F>
where
    T: VarULE,
    T: ?Sized,
    F: VarZeroVecFormat,
{
    /// Binary searches a sorted `VarZeroVecComponents<T>` for the given predicate. For more information, see
    /// the primitive function [`binary_search_by`](slice::binary_search_by).
    pub fn binary_search_by(&self, predicate: impl FnMut(&T) -> Ordering) -> Result<usize, usize> {
        self.binary_search_impl(predicate, self.indices_slice())
    }

    pub fn binary_search_in_range_by(
        &self,
        predicate: impl FnMut(&T) -> Ordering,
        range: Range<usize>,
    ) -> Option<Result<usize, usize>> {
        let indices_slice = self.indices_slice().get(range)?;
        Some(self.binary_search_impl(predicate, indices_slice))
    }

    /// Binary searches a sorted `VarZeroVecComponents<T>` with the given predicate. For more information, see
    /// the primitive function [`binary_search`](slice::binary_search).
    fn binary_search_impl(
        &self,
        mut predicate: impl FnMut(&T) -> Ordering,
        indices_slice: &[F::RawBytes],
    ) -> Result<usize, usize> {
        // This code is an absolute atrocity. This code is not a place of honor. This
        // code is known to the State of California to cause cancer.
        //
        // Unfortunately, the stdlib's `binary_search*` functions can only operate on slices.
        // We do not have a slice. We have something we can .get() and index on, but that is not
        // a slice.
        //
        // The `binary_search*` functions also do not have a variant where they give you the element's
        // index, which we could otherwise use to directly index `self`.
        // We do have `self.indices`, but these are indices into a byte buffer, which cannot in
        // isolation be used to recoup the logical index of the element they refer to.
        //
        // However, `binary_search_by()` provides references to the elements of the slice being iterated.
        // Since the layout of Rust slices is well-defined, we can do pointer arithmetic on these references
        // to obtain the index being used by the search.
        //
        // It's worth noting that the slice we choose to search is irrelevant, as long as it has the appropriate
        // length. `self.indices` is defined to have length `self.len()`, so it is convenient to use
        // here and does not require additional allocations.
        //
        // The alternative to doing this is to implement our own binary search. This is significantly less fun.

        // Note: We always use zero_index relative to the whole indices array, even if we are
        // only searching a subslice of it.
        let zero_index = self.indices.as_ptr() as *const _ as usize;
        indices_slice.binary_search_by(|probe: &_| {
            // `self.indices` is a vec of unaligned F::INDEX_WIDTH values, so we divide by F::INDEX_WIDTH
            // to get the actual index
            let index = (probe as *const _ as usize - zero_index) / F::INDEX_WIDTH;
            // safety: we know this is in bounds
            let actual_probe = unsafe { self.get_unchecked(index) };
            predicate(actual_probe)
        })
    }
}

/// Collects the bytes for a VarZeroSlice into a Vec.
pub fn get_serializable_bytes_non_empty<T, A, F>(elements: &[A]) -> Option<Vec<u8>>
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    debug_assert!(!elements.is_empty());
    let len = compute_serializable_len::<T, A, F>(elements)?;
    debug_assert!(len >= LENGTH_WIDTH as u32);
    let mut output: Vec<u8> = alloc::vec![0; len as usize];
    write_serializable_bytes::<T, A, F>(elements, &mut output);
    Some(output)
}

/// Writes the bytes for a VarZeroSlice into an output buffer.
///
/// Every byte in the buffer will be initialized after calling this function.
///
/// # Panics
///
/// Panics if the buffer is not exactly the correct length.
pub fn write_serializable_bytes<T, A, F>(elements: &[A], output: &mut [u8])
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    assert!(elements.len() <= MAX_LENGTH);
    let num_elements_bytes = elements.len().to_le_bytes();
    #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
    output[0..LENGTH_WIDTH].copy_from_slice(&num_elements_bytes[0..LENGTH_WIDTH]);

    // idx_offset = offset from the start of the buffer for the next index
    let mut idx_offset: usize = LENGTH_WIDTH + METADATA_WIDTH;
    // first_dat_offset = offset from the start of the buffer of the first data block
    let first_dat_offset: usize = idx_offset + elements.len() * F::INDEX_WIDTH;
    // dat_offset = offset from the start of the buffer of the next data block
    let mut dat_offset: usize = first_dat_offset;

    for element in elements.iter() {
        let element_len = element.encode_var_ule_len();

        let idx_limit = idx_offset + F::INDEX_WIDTH;
        #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
        let idx_slice = &mut output[idx_offset..idx_limit];
        // VZV expects data offsets to be stored relative to the first data block
        let idx = dat_offset - first_dat_offset;
        assert!(idx <= MAX_INDEX);
        #[allow(clippy::indexing_slicing)] // this function is explicitly panicky
        idx_slice.copy_from_slice(&idx.to_le_bytes()[..F::INDEX_WIDTH]);

        let dat_limit = dat_offset + element_len;
        #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
        let dat_slice = &mut output[dat_offset..dat_limit];
        element.encode_var_ule_write(dat_slice);
        debug_assert_eq!(T::validate_byte_slice(dat_slice), Ok(()));

        idx_offset = idx_limit;
        dat_offset = dat_limit;
    }

    debug_assert_eq!(
        idx_offset,
        LENGTH_WIDTH + METADATA_WIDTH + F::INDEX_WIDTH * elements.len()
    );
    assert_eq!(dat_offset, output.len());
}

pub fn compute_serializable_len<T, A, F>(elements: &[A]) -> Option<u32>
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    let idx_len: u32 = u32::try_from(elements.len())
        .ok()?
        .checked_mul(F::INDEX_WIDTH as u32)?
        .checked_add(LENGTH_WIDTH as u32)?
        .checked_add(METADATA_WIDTH as u32)?;
    let data_len: u32 = elements
        .iter()
        .map(|v| u32::try_from(v.encode_var_ule_len()).ok())
        .try_fold(0u32, |s, v| s.checked_add(v?))?;
    let ret = idx_len.checked_add(data_len);
    if let Some(r) = ret {
        if r >= F::MAX_VALUE {
            return None;
        }
    }
    ret
}