diesel/expression/
mod.rs

1//! AST types representing various typed SQL expressions.
2//!
3//! Almost all types implement either [`Expression`] or
4//! [`AsExpression`].
5//!
6//! The most common expression to work with is a
7//! [`Column`](crate::query_source::Column). There are various methods
8//! that you can call on these, found in
9//! [`expression_methods`](crate::expression_methods).
10//!
11//! You can also use numeric operators such as `+` on expressions of the
12//! appropriate type.
13//!
14//! Any primitive which implements [`ToSql`](crate::serialize::ToSql) will
15//! also implement [`AsExpression`], allowing it to be
16//! used as an argument to any of the methods described here.
17#[macro_use]
18pub(crate) mod ops;
19pub mod functions;
20
21#[cfg(not(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes"))]
22pub(crate) mod array_comparison;
23#[cfg(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes")]
24pub mod array_comparison;
25pub(crate) mod assume_not_null;
26pub(crate) mod bound;
27mod coerce;
28pub(crate) mod count;
29#[cfg(not(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes"))]
30pub(crate) mod exists;
31#[cfg(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes")]
32pub mod exists;
33pub(crate) mod grouped;
34pub(crate) mod helper_types;
35mod not;
36pub(crate) mod nullable;
37#[macro_use]
38pub(crate) mod operators;
39mod case_when;
40pub(crate) mod cast;
41pub(crate) mod select_by;
42mod sql_literal;
43pub(crate) mod subselect;
44
45#[cfg(feature = "i-implement-a-third-party-backend-and-opt-into-breaking-changes")]
46pub use self::operators::Concat;
47
48// we allow unreachable_pub here
49// as rustc otherwise shows false positives
50// for every item in this module. We reexport
51// everything from `crate::helper_types::`
52#[allow(non_camel_case_types, unreachable_pub)]
53pub(crate) mod dsl {
54    use crate::dsl::SqlTypeOf;
55
56    #[doc(inline)]
57    pub use super::case_when::case_when;
58    #[doc(inline)]
59    pub use super::count::*;
60    #[doc(inline)]
61    pub use super::exists::exists;
62    #[doc(inline)]
63    pub use super::functions::aggregate_folding::*;
64    #[doc(inline)]
65    pub use super::functions::aggregate_ordering::*;
66    #[doc(inline)]
67    pub use super::functions::date_and_time::*;
68    #[doc(inline)]
69    pub use super::functions::window_functions::*;
70    #[doc(inline)]
71    pub use super::helper_types::{case_when, IntoSql, Otherwise, When};
72    #[doc(inline)]
73    pub use super::not::not;
74    #[doc(inline)]
75    pub use super::sql_literal::sql;
76
77    #[cfg(feature = "postgres_backend")]
78    #[cfg_attr(
79        all(feature = "sqlite", feature = "postgres_backend"),
80        expect(
81            ambiguous_glob_reexports,
82            reason = "we cannot do much about this anymore"
83        )
84    )]
85    pub use crate::pg::expression::dsl::*;
86
87    #[cfg(feature = "sqlite")]
88    pub use crate::sqlite::expression::dsl::*;
89
90    /// The return type of [`count(expr)`](crate::dsl::count())
91    pub type count<Expr> = super::count::count<SqlTypeOf<Expr>, Expr>;
92
93    /// The return type of [`count_star()`](crate::dsl::count_star())
94    pub type count_star = super::count::CountStar;
95
96    #[cfg(all(feature = "with-deprecated", not(feature = "without-deprecated")))]
97    #[deprecated]
98    #[doc(hidden)]
99    pub type count_distinct<Expr> = super::count::CountDistinct<SqlTypeOf<Expr>, Expr>;
100
101    /// The return type of [`date(expr)`](crate::dsl::date())
102    pub type date<Expr> = super::functions::date_and_time::date<Expr>;
103
104    #[cfg(feature = "mysql_backend")]
105    pub use crate::mysql::query_builder::DuplicatedKeys;
106
107    pub use super::functions::aggregate_expressions::frame_clause::{
108        FrameBoundDsl, FrameClauseDsl,
109    };
110
111    /// Different frame clause specifications for window functions
112    pub mod frame {
113        pub use super::super::functions::aggregate_expressions::frame_clause::{
114            CurrentRow, ExcludeCurrentRow, ExcludeGroup, ExcludeNoOthers, ExcludeTies, Groups,
115            Range, Rows, UnboundedFollowing, UnboundedPreceding,
116        };
117    }
118}
119
120#[doc(inline)]
121pub use self::case_when::CaseWhen;
122#[doc(inline)]
123pub use self::cast::{CastsTo, FallibleCastsTo, KnownCastSqlTypeName};
124#[doc(inline)]
125pub use self::sql_literal::{SqlLiteral, UncheckedBind};
126
127use crate::backend::Backend;
128use crate::dsl::{AsExprOf, AsSelect};
129use crate::sql_types::{HasSqlType, SingleValue, SqlType};
130
131/// Represents a typed fragment of SQL.
132///
133/// Apps should not need to implement this type directly, but it may be common
134/// to use this in where clauses. Libraries should consider using
135/// [`infix_operator!`](crate::infix_operator!) or
136/// [`postfix_operator!`](crate::postfix_operator!) instead of
137/// implementing this directly.
138pub trait Expression {
139    /// The type that this expression represents in SQL
140    type SqlType: TypedExpressionType;
141}
142
143/// Marker trait for possible types of [`Expression::SqlType`]
144pub trait TypedExpressionType {}
145
146/// Possible types for []`Expression::SqlType`]
147pub mod expression_types {
148    use super::{QueryMetadata, TypedExpressionType};
149    use crate::backend::Backend;
150    use crate::sql_types::SingleValue;
151
152    /// Query nodes with this expression type do not have a statically at compile
153    /// time known expression type.
154    ///
155    /// An example for such a query node in diesel itself, is `sql_query` as
156    /// we do not know which fields are returned from such a query at compile time.
157    ///
158    /// For loading values from queries returning a type of this expression, consider
159    /// using [`#[derive(QueryableByName)]`](derive@crate::deserialize::QueryableByName)
160    /// on the corresponding result type.
161    #[derive(#[automatically_derived]
impl ::core::clone::Clone for Untyped {
    #[inline]
    fn clone(&self) -> Untyped { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for Untyped { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for Untyped {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f, "Untyped")
    }
}Debug)]
162    pub struct Untyped;
163
164    /// Query nodes which cannot be part of a select clause.
165    ///
166    /// If you see an error message containing `FromSqlRow` and this type
167    /// recheck that you have written a valid select clause
168    ///
169    /// These may notably be used as intermediate Expression nodes of the query builder
170    /// which do not map to actual SQL expressions (for implementation simplicity).
171    #[derive(#[automatically_derived]
impl ::core::fmt::Debug for NotSelectable {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f, "NotSelectable")
    }
}Debug, #[automatically_derived]
impl ::core::clone::Clone for NotSelectable {
    #[inline]
    fn clone(&self) -> NotSelectable { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for NotSelectable { }Copy)]
172    pub struct NotSelectable;
173
174    impl TypedExpressionType for Untyped {}
175    impl TypedExpressionType for NotSelectable {}
176
177    impl<ST> TypedExpressionType for ST where ST: SingleValue {}
178
179    impl<DB: Backend> QueryMetadata<Untyped> for DB {
180        fn row_metadata(_: &mut DB::MetadataLookup, row: &mut Vec<Option<DB::TypeMetadata>>) {
181            row.push(None)
182        }
183    }
184}
185
186impl<T: Expression + ?Sized> Expression for Box<T> {
187    type SqlType = T::SqlType;
188}
189
190impl<T: Expression + ?Sized> Expression for &T {
191    type SqlType = T::SqlType;
192}
193
194/// A helper to translate type level sql type information into
195/// runtime type information for specific queries
196///
197/// If you do not implement a custom backend implementation
198/// this trait is likely not relevant for you.
199pub trait QueryMetadata<T>: Backend {
200    /// The exact return value of this function is considered to be a
201    /// backend specific implementation detail. You should not rely on those
202    /// values if you not own the corresponding backend
203    fn row_metadata(lookup: &mut Self::MetadataLookup, out: &mut Vec<Option<Self::TypeMetadata>>);
204}
205
206impl<T, DB> QueryMetadata<T> for DB
207where
208    DB: Backend + HasSqlType<T>,
209    T: SingleValue,
210{
211    fn row_metadata(lookup: &mut Self::MetadataLookup, out: &mut Vec<Option<Self::TypeMetadata>>) {
212        out.push(Some(<DB as HasSqlType<T>>::metadata(lookup)))
213    }
214}
215
216/// Converts a type to its representation for use in Diesel's query builder.
217///
218/// This trait is used directly. Apps should typically use [`IntoSql`] instead.
219///
220/// Implementations of this trait will generally do one of 3 things:
221///
222/// - Return `self` for types which are already parts of Diesel's query builder
223/// - Perform some implicit coercion (for example, allowing [`now`] to be used as
224///   both [`Timestamp`] and [`Timestamptz`].
225/// - Indicate that the type has data which will be sent separately from the
226///   query. This is generally referred as a "bind parameter". Types which
227///   implement [`ToSql`] will generally implement `AsExpression` this way.
228///
229///   [`IntoSql`]: crate::IntoSql
230///   [`now`]: crate::dsl::now
231///   [`Timestamp`]: crate::sql_types::Timestamp
232///   [`Timestamptz`]: ../pg/types/sql_types/struct.Timestamptz.html
233///   [`ToSql`]: crate::serialize::ToSql
234///
235///  This trait could be [derived](derive@AsExpression)
236pub trait AsExpression<T>
237where
238    T: SqlType + TypedExpressionType,
239{
240    /// The expression being returned
241    type Expression: Expression<SqlType = T>;
242
243    /// Perform the conversion
244    #[allow(clippy::wrong_self_convention)]
245    // That's public API we cannot change it to appease clippy
246    fn as_expression(self) -> Self::Expression;
247}
248
249#[doc(inline)]
250pub use diesel_derives::AsExpression;
251
252impl<T, ST> AsExpression<ST> for T
253where
254    T: Expression<SqlType = ST>,
255    ST: SqlType + TypedExpressionType,
256{
257    type Expression = T;
258
259    fn as_expression(self) -> T {
260        self
261    }
262}
263
264/// Converts a type to its representation for use in Diesel's query builder.
265///
266/// This trait only exists to make usage of `AsExpression` more ergonomic when
267/// the `SqlType` cannot be inferred. It is generally used when you need to use
268/// a Rust value as the left hand side of an expression, or when you want to
269/// select a constant value.
270///
271/// # Example
272///
273/// ```rust
274/// # include!("../doctest_setup.rs");
275/// # use schema::users;
276/// #
277/// # fn main() {
278/// use diesel::sql_types::Text;
279/// #   let conn = &mut establish_connection();
280/// let names = users::table
281///     .select("The Amazing ".into_sql::<Text>().concat(users::name))
282///     .load(conn);
283/// let expected_names = vec![
284///     "The Amazing Sean".to_string(),
285///     "The Amazing Tess".to_string(),
286/// ];
287/// assert_eq!(Ok(expected_names), names);
288/// # }
289/// ```
290pub trait IntoSql {
291    /// Convert `self` to an expression for Diesel's query builder.
292    ///
293    /// There is no difference in behavior between `x.into_sql::<Y>()` and
294    /// `AsExpression::<Y>::as_expression(x)`.
295    fn into_sql<T>(self) -> AsExprOf<Self, T>
296    where
297        Self: AsExpression<T> + Sized,
298        T: SqlType + TypedExpressionType,
299    {
300        self.as_expression()
301    }
302
303    /// Convert `&self` to an expression for Diesel's query builder.
304    ///
305    /// There is no difference in behavior between `x.as_sql::<Y>()` and
306    /// `AsExpression::<Y>::as_expression(&x)`.
307    fn as_sql<'a, T>(&'a self) -> AsExprOf<&'a Self, T>
308    where
309        &'a Self: AsExpression<T>,
310        T: SqlType + TypedExpressionType,
311    {
312        <&'a Self as AsExpression<T>>::as_expression(self)
313    }
314}
315
316impl<T> IntoSql for T {}
317
318/// Indicates that all elements of an expression are valid given a from clause.
319///
320/// This is used to ensure that `users.filter(posts::id.eq(1))` fails to
321/// compile. This constraint is only used in places where the nullability of a
322/// SQL type doesn't matter (everything except `select` and `returning`). For
323/// places where nullability is important, `SelectableExpression` is used
324/// instead.
325pub trait AppearsOnTable<QS: ?Sized>: Expression {}
326
327impl<T: ?Sized, QS> AppearsOnTable<QS> for Box<T>
328where
329    T: AppearsOnTable<QS>,
330    Box<T>: Expression,
331{
332}
333
334impl<'a, T: ?Sized, QS> AppearsOnTable<QS> for &'a T
335where
336    T: AppearsOnTable<QS>,
337    &'a T: Expression,
338{
339}
340
341/// Indicates that an expression can be selected from a source.
342///
343/// Columns will implement this for their table. Certain special types, like
344/// `CountStar` and `Bound` will implement this for all sources. Most compound
345/// expressions will implement this if each of their parts implement it.
346///
347/// Notably, columns will not implement this trait for the right side of a left
348/// join. To select a column or expression using a column from the right side of
349/// a left join, you must call `.nullable()` on it.
350#[diagnostic::on_unimplemented(
351    message = "cannot select `{Self}` from `{QS}`",
352    note = "`{Self}` is no valid selection for `{QS}`"
353)]
354pub trait SelectableExpression<QS: ?Sized>: AppearsOnTable<QS> {}
355
356impl<T: ?Sized, QS> SelectableExpression<QS> for Box<T>
357where
358    T: SelectableExpression<QS>,
359    Box<T>: AppearsOnTable<QS>,
360{
361}
362
363impl<'a, T: ?Sized, QS> SelectableExpression<QS> for &'a T
364where
365    T: SelectableExpression<QS>,
366    &'a T: AppearsOnTable<QS>,
367{
368}
369
370/// Trait indicating that a record can be selected and queried from the database.
371///
372/// Types which implement `Selectable` represent the select clause of a SQL query.
373/// Use [`SelectableHelper::as_select()`] to construct the select clause. Once you
374/// called `.select(YourType::as_select())` we enforce at the type system level that you
375/// use the same type to load the query result into.
376///
377/// The constructed select clause can contain arbitrary expressions coming from different
378/// tables. The corresponding [derive](derive@Selectable) provides a simple way to
379/// construct a select clause matching fields to the corresponding table columns.
380///
381/// # Examples
382///
383/// If you just want to construct a select clause using an existing struct, you can use
384/// `#[derive(Selectable)]`, See [`#[derive(Selectable)]`](derive@Selectable) for details.
385///
386///
387/// ```rust
388/// # include!("../doctest_setup.rs");
389/// #
390/// use schema::users;
391///
392/// #[derive(Queryable, PartialEq, Debug, Selectable)]
393/// struct User {
394///     id: i32,
395///     name: String,
396/// }
397///
398/// # fn main() {
399/// #     run_test();
400/// # }
401/// #
402/// # fn run_test() -> QueryResult<()> {
403/// #     use schema::users::dsl::*;
404/// #     let connection = &mut establish_connection();
405/// let first_user = users.select(User::as_select()).first(connection)?;
406/// let expected = User {
407///     id: 1,
408///     name: "Sean".into(),
409/// };
410/// assert_eq!(expected, first_user);
411/// #     Ok(())
412/// # }
413/// ```
414///
415/// Alternatively, we can implement the trait for our struct manually.
416///
417/// ```rust
418/// # include!("../doctest_setup.rs");
419/// #
420/// use diesel::backend::Backend;
421/// use diesel::prelude::{Queryable, Selectable};
422/// use schema::users;
423///
424/// #[derive(Queryable, PartialEq, Debug)]
425/// struct User {
426///     id: i32,
427///     name: String,
428/// }
429///
430/// impl<DB> Selectable<DB> for User
431/// where
432///     DB: Backend,
433/// {
434///     type SelectExpression = (users::id, users::name);
435///
436///     fn construct_selection() -> Self::SelectExpression {
437///         (users::id, users::name)
438///     }
439/// }
440///
441/// # fn main() {
442/// #     run_test();
443/// # }
444/// #
445/// # fn run_test() -> QueryResult<()> {
446/// #     use schema::users::dsl::*;
447/// #     let connection = &mut establish_connection();
448/// let first_user = users.select(User::as_select()).first(connection)?;
449/// let expected = User {
450///     id: 1,
451///     name: "Sean".into(),
452/// };
453/// assert_eq!(expected, first_user);
454/// #     Ok(())
455/// # }
456/// ```
457///
458/// When selecting from joined tables, you can select from a
459/// composition of types that implement `Selectable`. The simplest way
460/// is to use a tuple of all the types you wish to select.
461///
462/// ```rust
463/// # include!("../doctest_setup.rs");
464/// use schema::{posts, users};
465///
466/// #[derive(Debug, PartialEq, Queryable, Selectable)]
467/// struct User {
468///     id: i32,
469///     name: String,
470/// }
471///
472/// #[derive(Debug, PartialEq, Queryable, Selectable)]
473/// struct Post {
474///     id: i32,
475///     user_id: i32,
476///     title: String,
477/// }
478///
479/// # fn main() -> QueryResult<()> {
480/// #     let connection = &mut establish_connection();
481/// #
482/// let (first_user, first_post) = users::table
483///     .inner_join(posts::table)
484///     .select(<(User, Post)>::as_select())
485///     .first(connection)?;
486///
487/// let expected_user = User {
488///     id: 1,
489///     name: "Sean".into(),
490/// };
491/// assert_eq!(expected_user, first_user);
492///
493/// let expected_post = Post {
494///     id: 1,
495///     user_id: 1,
496///     title: "My first post".into(),
497/// };
498/// assert_eq!(expected_post, first_post);
499/// #
500/// #     Ok(())
501/// # }
502/// ```
503///
504/// If you want to load only a subset of fields, you can create types
505/// with those fields and use them in the composition.
506///
507/// ```rust
508/// # include!("../doctest_setup.rs");
509/// use schema::{posts, users};
510///
511/// #[derive(Debug, PartialEq, Queryable, Selectable)]
512/// struct User {
513///     id: i32,
514///     name: String,
515/// }
516///
517/// #[derive(Debug, PartialEq, Queryable, Selectable)]
518/// #[diesel(table_name = posts)]
519/// struct PostTitle {
520///     title: String,
521/// }
522///
523/// # fn main() -> QueryResult<()> {
524/// #     let connection = &mut establish_connection();
525/// #
526/// let (first_user, first_post_title) = users::table
527///     .inner_join(posts::table)
528///     .select(<(User, PostTitle)>::as_select())
529///     .first(connection)?;
530///
531/// let expected_user = User {
532///     id: 1,
533///     name: "Sean".into(),
534/// };
535/// assert_eq!(expected_user, first_user);
536///
537/// let expected_post_title = PostTitle {
538///     title: "My first post".into(),
539/// };
540/// assert_eq!(expected_post_title, first_post_title);
541/// #
542/// #     Ok(())
543/// # }
544/// ```
545///
546/// You are not limited to using only tuples to build the composed
547/// type. The [`Selectable`](derive@Selectable) derive macro allows
548/// you to *embed* other types. This is useful when you want to
549/// implement methods or traits on the composed type.
550///
551/// ```rust
552/// # include!("../doctest_setup.rs");
553/// use schema::{posts, users};
554///
555/// #[derive(Debug, PartialEq, Queryable, Selectable)]
556/// struct User {
557///     id: i32,
558///     name: String,
559/// }
560///
561/// #[derive(Debug, PartialEq, Queryable, Selectable)]
562/// #[diesel(table_name = posts)]
563/// struct PostTitle {
564///     title: String,
565/// }
566///
567/// #[derive(Debug, PartialEq, Queryable, Selectable)]
568/// struct UserPost {
569///     #[diesel(embed)]
570///     user: User,
571///     #[diesel(embed)]
572///     post_title: PostTitle,
573/// }
574///
575/// # fn main() -> QueryResult<()> {
576/// #     let connection = &mut establish_connection();
577/// #
578/// let first_user_post = users::table
579///     .inner_join(posts::table)
580///     .select(UserPost::as_select())
581///     .first(connection)?;
582///
583/// let expected_user_post = UserPost {
584///     user: User {
585///         id: 1,
586///         name: "Sean".into(),
587///     },
588///     post_title: PostTitle {
589///         title: "My first post".into(),
590///     },
591/// };
592/// assert_eq!(expected_user_post, first_user_post);
593/// #
594/// #     Ok(())
595/// # }
596/// ```
597///
598/// It is also possible to specify an entirely custom select expression
599/// for fields when deriving [`Selectable`](derive@Selectable).
600/// This is useful for example to
601///
602///  * avoid nesting types, or to
603///  * populate fields with values other than table columns, such as
604///    the result of an SQL function like `CURRENT_TIMESTAMP()`
605///    or a custom SQL function.
606///
607/// The select expression is specified via the `select_expression` parameter.
608///
609/// Query fragments created using [`dsl::auto_type`](crate::dsl::auto_type) are supported, which
610/// may be useful as the select expression gets large: it may not be practical to inline it in
611/// the attribute then.
612///
613/// The type of the expression is usually inferred. If it can't be fully inferred automatically,
614/// one may either:
615/// - Put type annotations in inline blocks in the query fragment itself
616/// - Use a dedicated [`dsl::auto_type`](crate::dsl::auto_type) function as `select_expression`
617///   and use [`dsl::auto_type`'s type annotation features](crate::dsl::auto_type)
618/// - Specify the type of the expression using the `select_expression_type` attribute
619///
620/// ```rust
621/// # include!("../doctest_setup.rs");
622/// use diesel::dsl;
623/// use schema::{posts, users};
624///
625/// #[derive(Debug, PartialEq, Queryable, Selectable)]
626/// struct User {
627///     id: i32,
628///     name: String,
629/// }
630///
631/// #[derive(Debug, PartialEq, Queryable, Selectable)]
632/// #[diesel(table_name = posts)]
633/// struct PostTitle {
634///     title: String,
635/// }
636///
637/// #[derive(Debug, PartialEq, Queryable, Selectable)]
638/// struct UserPost {
639///     #[diesel(select_expression = users::columns::id)]
640///     #[diesel(select_expression_type = users::columns::id)]
641///     id: i32,
642///     #[diesel(select_expression = users::columns::name)]
643///     name: String,
644///     #[diesel(select_expression = complex_fragment_for_title())]
645///     title: String,
646/// #   #[cfg(feature = "chrono")]
647///     #[diesel(select_expression = diesel::dsl::now)]
648///     access_time: chrono::NaiveDateTime,
649///     #[diesel(select_expression = users::columns::id.eq({let id: i32 = FOO; id}))]
650///     user_id_is_foo: bool,
651/// }
652/// const FOO: i32 = 42; // Type of FOO can't be inferred automatically in the select_expression
653/// #[dsl::auto_type]
654/// fn complex_fragment_for_title() -> _ {
655///     // See the `#[dsl::auto_type]` documentation for examples of more complex usage
656///     posts::columns::title
657/// }
658///
659/// # fn main() -> QueryResult<()> {
660/// #     let connection = &mut establish_connection();
661/// #
662/// let first_user_post = users::table
663///     .inner_join(posts::table)
664///     .select(UserPost::as_select())
665///     .first(connection)?;
666///
667/// let expected_user_post = UserPost {
668///     id: 1,
669///     name: "Sean".into(),
670///     title: "My first post".into(),
671/// #   #[cfg(feature = "chrono")]
672///     access_time: first_user_post.access_time,
673///     user_id_is_foo: false,
674/// };
675/// assert_eq!(expected_user_post, first_user_post);
676/// #
677/// #     Ok(())
678/// # }
679/// ```
680pub trait Selectable<DB: Backend> {
681    /// The expression you'd like to select.
682    ///
683    /// This is typically a tuple of corresponding to the table columns of your struct's fields.
684    type SelectExpression: Expression;
685
686    /// Construct an instance of the expression
687    fn construct_selection() -> Self::SelectExpression;
688}
689
690#[doc(inline)]
691pub use diesel_derives::Selectable;
692
693/// This helper trait provides several methods for
694/// constructing a select or returning clause based on a
695/// [`Selectable`] implementation.
696pub trait SelectableHelper<DB: Backend>: Selectable<DB> + Sized {
697    /// Construct a select clause based on a [`Selectable`] implementation.
698    ///
699    /// The returned select clause enforces that you use the same type
700    /// for constructing the select clause and for loading the query result into.
701    fn as_select() -> AsSelect<Self, DB>;
702
703    /// An alias for `as_select` that can be used with returning clauses
704    fn as_returning() -> AsSelect<Self, DB> {
705        Self::as_select()
706    }
707}
708
709impl<T, DB> SelectableHelper<DB> for T
710where
711    T: Selectable<DB>,
712    DB: Backend,
713{
714    fn as_select() -> AsSelect<Self, DB> {
715        select_by::SelectBy::new()
716    }
717}
718
719/// Is this expression valid for a given group by clause?
720///
721/// Implementations of this trait must ensure that aggregate expressions are
722/// not mixed with non-aggregate expressions.
723///
724/// For generic types, you can determine if your sub-expressions can appear
725/// together using the [`MixedAggregates`] trait.
726///
727/// `GroupByClause` will be a tuple containing the set of expressions appearing
728/// in the `GROUP BY` portion of the query. If there is no `GROUP BY`, it will
729/// be `()`.
730///
731/// This trait can be [derived]
732///
733/// [derived]: derive@ValidGrouping
734pub trait ValidGrouping<GroupByClause> {
735    /// Is this expression aggregate?
736    ///
737    /// This type should always be one of the structs in the [`is_aggregate`]
738    /// module. See the documentation of those structs for more details.
739    type IsAggregate;
740}
741
742impl<T: ValidGrouping<GB> + ?Sized, GB> ValidGrouping<GB> for Box<T> {
743    type IsAggregate = T::IsAggregate;
744}
745
746impl<T: ValidGrouping<GB> + ?Sized, GB> ValidGrouping<GB> for &T {
747    type IsAggregate = T::IsAggregate;
748}
749
750impl<GB> ValidGrouping<GB> for () {
751    type IsAggregate = is_aggregate::Never;
752}
753
754#[doc(inline)]
755pub use diesel_derives::ValidGrouping;
756
757#[doc(hidden)]
758#[diagnostic::on_unimplemented(
759    note = "if your query contains columns from several tables in your group by or select \
760            clause make sure to call `allow_columns_to_appear_in_same_group_by_clause!` \
761            with these columns"
762)]
763pub trait IsContainedInGroupBy<T> {
764    type Output;
765}
766
767#[doc(hidden)]
768#[allow(missing_debug_implementations, missing_copy_implementations)]
769pub mod is_contained_in_group_by {
770    pub struct Yes;
771    pub struct No;
772
773    pub trait IsAny<O> {
774        type Output;
775    }
776
777    impl<T> IsAny<T> for Yes {
778        type Output = Yes;
779    }
780
781    impl IsAny<Yes> for No {
782        type Output = Yes;
783    }
784
785    impl IsAny<No> for No {
786        type Output = No;
787    }
788}
789
790/// Can two `IsAggregate` types appear in the same expression?
791///
792/// You should never implement this trait. It will eventually become a trait
793/// alias.
794///
795/// [`is_aggregate::Yes`] and [`is_aggregate::No`] can only appear with
796/// themselves or [`is_aggregate::Never`]. [`is_aggregate::Never`] can appear
797/// with anything.
798#[diagnostic::on_unimplemented(
799    message = "mixing aggregate and not aggregate expressions is not allowed in SQL",
800    note = "you tried to combine expressions that aggregate over a certain column with expressions that don't aggregate over that column",
801    note = "try to either use aggregate functions like `min`/`max`/… for this column or add the column to your `GROUP BY` clause",
802    note = "also there are clauses like `WHERE` or `RETURNING` that does not accept aggregate expressions at all"
803)]
804pub trait MixedAggregates<Other> {
805    /// What is the resulting `IsAggregate` type?
806    type Output;
807}
808
809#[allow(missing_debug_implementations, missing_copy_implementations)]
810/// Possible values for `ValidGrouping::IsAggregate`
811pub mod is_aggregate {
812    use super::MixedAggregates;
813
814    /// Yes, this expression is aggregate for the given group by clause.
815    pub struct Yes;
816
817    /// No, this expression is not aggregate with the given group by clause,
818    /// but it might be aggregate with a different group by clause.
819    pub struct No;
820
821    /// This expression is never aggregate, and can appear with any other
822    /// expression, regardless of whether it is aggregate.
823    ///
824    /// Examples of this are literals. `1` does not care about aggregation.
825    /// `foo + 1` is always valid, regardless of whether `foo` appears in the
826    /// group by clause or not.
827    pub struct Never;
828
829    impl MixedAggregates<Yes> for Yes {
830        type Output = Yes;
831    }
832
833    impl MixedAggregates<Never> for Yes {
834        type Output = Yes;
835    }
836
837    impl MixedAggregates<No> for No {
838        type Output = No;
839    }
840
841    impl MixedAggregates<Never> for No {
842        type Output = No;
843    }
844
845    impl<T> MixedAggregates<T> for Never {
846        type Output = T;
847    }
848}
849
850#[cfg(feature = "unstable")]
851// this needs to be a separate module for the reasons given in
852// https://github.com/rust-lang/rust/issues/65860
853mod unstable;
854
855#[cfg(feature = "unstable")]
856#[doc(inline)]
857pub use self::unstable::NonAggregate;
858
859// Note that these docs are similar to but slightly different than the unstable
860// docs above. Make sure if you change these that you also change the docs
861// above.
862/// Trait alias to represent an expression that isn't aggregate by default.
863///
864/// This trait should never be implemented directly. It is replaced with a
865/// trait alias when the `unstable` feature is enabled.
866///
867/// This alias represents a type which is not aggregate if there is no group by
868/// clause. More specifically, it represents for types which implement
869/// [`ValidGrouping<()>`] where `IsAggregate` is [`is_aggregate::No`] or
870/// [`is_aggregate::Yes`].
871///
872/// While this trait is a useful stand-in for common cases, `T: NonAggregate`
873/// cannot always be used when `T: ValidGrouping<(), IsAggregate = No>` or
874/// `T: ValidGrouping<(), IsAggregate = Never>` could be. For that reason,
875/// unless you need to abstract over both columns and literals, you should
876/// prefer to use [`ValidGrouping<()>`] in your bounds instead.
877///
878/// [`ValidGrouping<()>`]: ValidGrouping
879#[cfg(not(feature = "unstable"))]
880pub trait NonAggregate: ValidGrouping<()> {}
881
882#[cfg(not(feature = "unstable"))]
883impl<T> NonAggregate for T
884where
885    T: ValidGrouping<()>,
886    T::IsAggregate: MixedAggregates<is_aggregate::No, Output = is_aggregate::No>,
887{
888}
889
890use crate::query_builder::{QueryFragment, QueryId};
891
892/// Helper trait used when boxing expressions.
893///
894/// In Rust you cannot create a trait object with more than one trait.
895/// This type has all of the additional traits you would want when using
896/// `Box<Expression>` as a single trait object.
897///
898/// By default `BoxableExpression` is not usable in queries that have a custom
899/// group by clause. Setting the generic parameters `GB` and `IsAggregate` allows
900/// to configure the expression to be used with a specific group by clause.
901///
902/// This is typically used as the return type of a function.
903/// For cases where you want to dynamically construct a query,
904/// [boxing the query] is usually more ergonomic.
905///
906/// [boxing the query]: crate::query_dsl::QueryDsl::into_boxed()
907///
908/// # Examples
909///
910/// ## Usage without group by clause
911///
912/// ```rust
913/// # include!("../doctest_setup.rs");
914/// # use schema::users;
915/// use diesel::sql_types::Bool;
916///
917/// # fn main() {
918/// #     run_test().unwrap();
919/// # }
920/// #
921/// # fn run_test() -> QueryResult<()> {
922/// #     let conn = &mut establish_connection();
923/// enum Search {
924///     Id(i32),
925///     Name(String),
926/// }
927///
928/// # /*
929/// type DB = diesel::sqlite::Sqlite;
930/// # */
931/// fn find_user(search: Search) -> Box<dyn BoxableExpression<users::table, DB, SqlType = Bool>> {
932///     match search {
933///         Search::Id(id) => Box::new(users::id.eq(id)),
934///         Search::Name(name) => Box::new(users::name.eq(name)),
935///     }
936/// }
937///
938/// let user_one = users::table.filter(find_user(Search::Id(1))).first(conn)?;
939/// assert_eq!((1, String::from("Sean")), user_one);
940///
941/// let tess = users::table
942///     .filter(find_user(Search::Name("Tess".into())))
943///     .first(conn)?;
944/// assert_eq!((2, String::from("Tess")), tess);
945/// #     Ok(())
946/// # }
947/// ```
948///
949/// ## Allow usage with group by clause
950///
951/// ```rust
952/// # include!("../doctest_setup.rs");
953///
954/// # use schema::users;
955/// use diesel::dsl;
956/// use diesel::expression::ValidGrouping;
957/// use diesel::sql_types::Text;
958///
959/// # fn main() {
960/// #     run_test().unwrap();
961/// # }
962/// #
963/// # fn run_test() -> QueryResult<()> {
964/// #     let conn = &mut establish_connection();
965/// enum NameOrConst {
966///     Name,
967///     Const(String),
968/// }
969///
970/// # /*
971/// type DB = diesel::sqlite::Sqlite;
972/// # */
973/// fn selection<GB>(
974///     selection: NameOrConst,
975/// ) -> Box<
976///     dyn BoxableExpression<
977///         users::table,
978///         DB,
979///         GB,
980///         <users::name as ValidGrouping<GB>>::IsAggregate,
981///         SqlType = Text,
982///     >,
983/// >
984/// where
985///     users::name: BoxableExpression<
986///             users::table,
987///             DB,
988///             GB,
989///             <users::name as ValidGrouping<GB>>::IsAggregate,
990///             SqlType = Text,
991///         > + ValidGrouping<GB>,
992/// {
993///     match selection {
994///         NameOrConst::Name => Box::new(users::name),
995///         NameOrConst::Const(name) => Box::new(name.into_sql::<Text>()),
996///     }
997/// }
998///
999/// let user_one = users::table
1000///     .select(selection(NameOrConst::Name))
1001///     .first::<String>(conn)?;
1002/// assert_eq!(String::from("Sean"), user_one);
1003///
1004/// let with_name = users::table
1005///     .group_by(users::name)
1006///     .select(selection(NameOrConst::Const("Jane Doe".into())))
1007///     .first::<String>(conn)?;
1008/// assert_eq!(String::from("Jane Doe"), with_name);
1009/// #     Ok(())
1010/// # }
1011/// ```
1012///
1013/// ## More advanced query source
1014///
1015/// This example is a bit contrived, but in general, if you want to for example filter based on
1016/// different criteria on a joined table, you can use `InnerJoinQuerySource` and
1017/// `LeftJoinQuerySource` in the QS parameter of `BoxableExpression`.
1018///
1019/// ```rust
1020/// # include!("../doctest_setup.rs");
1021/// # use schema::{users, posts};
1022/// use diesel::dsl::InnerJoinQuerySource;
1023/// use diesel::sql_types::Bool;
1024///
1025/// # fn main() {
1026/// #     run_test().unwrap();
1027/// # }
1028/// #
1029/// # fn run_test() -> QueryResult<()> {
1030/// #     let conn = &mut establish_connection();
1031/// enum UserPostFilter {
1032///     User(i32),
1033///     Post(i32),
1034/// }
1035///
1036/// # /*
1037/// type DB = diesel::sqlite::Sqlite;
1038/// # */
1039/// fn filter_user_posts(
1040///     filter: UserPostFilter,
1041/// ) -> Box<
1042///     dyn BoxableExpression<InnerJoinQuerySource<users::table, posts::table>, DB, SqlType = Bool>,
1043/// > {
1044///     match filter {
1045///         UserPostFilter::User(user_id) => Box::new(users::id.eq(user_id)),
1046///         UserPostFilter::Post(post_id) => Box::new(posts::id.eq(post_id)),
1047///     }
1048/// }
1049///
1050/// let post_by_user_one = users::table
1051///     .inner_join(posts::table)
1052///     .filter(filter_user_posts(UserPostFilter::User(2)))
1053///     .select((posts::title, users::name))
1054///     .first::<(String, String)>(conn)?;
1055///
1056/// assert_eq!(
1057///     ("My first post too".to_string(), "Tess".to_string()),
1058///     post_by_user_one
1059/// );
1060/// #     Ok(())
1061/// # }
1062/// ```
1063pub trait BoxableExpression<QS, DB, GB = (), IsAggregate = is_aggregate::No>
1064where
1065    DB: Backend,
1066    Self: Expression,
1067    Self: SelectableExpression<QS>,
1068    Self: QueryFragment<DB>,
1069    Self: Send,
1070{
1071}
1072
1073impl<QS, T, DB, GB, IsAggregate> BoxableExpression<QS, DB, GB, IsAggregate> for T
1074where
1075    DB: Backend,
1076    T: Expression,
1077    T: SelectableExpression<QS>,
1078    T: ValidGrouping<GB>,
1079    T: QueryFragment<DB>,
1080    T: Send,
1081    T::IsAggregate: MixedAggregates<IsAggregate, Output = IsAggregate>,
1082{
1083}
1084
1085impl<QS, ST, DB, GB, IsAggregate> QueryId
1086    for dyn BoxableExpression<QS, DB, GB, IsAggregate, SqlType = ST> + '_
1087{
1088    type QueryId = ();
1089
1090    const HAS_STATIC_QUERY_ID: bool = false;
1091}
1092
1093impl<QS, ST, DB, GB, IsAggregate> ValidGrouping<GB>
1094    for dyn BoxableExpression<QS, DB, GB, IsAggregate, SqlType = ST> + '_
1095{
1096    type IsAggregate = IsAggregate;
1097}
1098
1099/// Converts a tuple of values into a tuple of Diesel expressions.
1100#[deprecated(note = "Use `IntoArrayExpression` instead")]
1101#[cfg(all(feature = "with-deprecated", not(feature = "without-deprecated")))]
1102pub trait AsExpressionList<ST> {
1103    /// The final output expression
1104    type Expression;
1105
1106    /// Perform the conversion
1107    // That's public API, we cannot change
1108    // that to appease clippy
1109    #[allow(clippy::wrong_self_convention)]
1110    fn as_expression_list(self) -> Self::Expression;
1111}
1112
1113#[cfg(feature = "postgres_backend")]
1114#[cfg(all(feature = "with-deprecated", not(feature = "without-deprecated")))]
1115#[allow(deprecated)]
1116impl<T, ST> AsExpressionList<ST> for T
1117where
1118    T: crate::pg::expression::array::IntoArrayExpression<ST>,
1119    ST: SqlType + TypedExpressionType,
1120{
1121    type Expression = <T as crate::pg::expression::array::IntoArrayExpression<ST>>::ArrayExpression;
1122
1123    fn as_expression_list(self) -> Self::Expression {
1124        self.into_array_expression()
1125    }
1126}