1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::mem;

use aho_corasick::{Automaton, AcAutomaton, FullAcAutomaton};
use memchr::{memchr, memchr2, memchr3};
use syntax;

use freqs::BYTE_FREQUENCIES;

use simd_accel::teddy128::{Teddy, is_teddy_128_available};

/// A prefix extracted from a compiled regular expression.
///
/// A regex prefix is a set of literal strings that *must* be matched at the
/// beginning of a regex in order for the entire regex to match.
///
/// There are a variety of ways to efficiently scan the search text for a
/// prefix. Currently, there are three implemented:
///
/// 1. The prefix is a single byte. Just use memchr.
/// 2. If the prefix is a set of two or more single byte prefixes, then
///    a single sparse map is created. Checking if there is a match is a lookup
///    in this map for each byte in the search text.
/// 3. In all other cases, build an Aho-Corasick automaton.
///
/// It's possible that there's room here for other substring algorithms,
/// such as Boyer-Moore for single-set prefixes greater than 1, or Rabin-Karp
/// for small sets of same-length prefixes.
#[derive(Clone, Debug)]
pub struct LiteralSearcher {
    complete: bool,
    lcp: SingleSearch,
    lcs: SingleSearch,
    matcher: Matcher,
}

#[derive(Clone, Debug)]
enum Matcher {
    /// No literals. (Never advances through the input.)
    Empty,
    /// A set of four or more single byte literals.
    Bytes(SingleByteSet),
    /// A single substring. (Likely using Boyer-Moore with memchr.)
    Single(SingleSearch),
    /// An Aho-Corasick automaton.
    AC(FullAcAutomaton<syntax::Lit>),
    /// A simd accelerated multiple string matcher.
    Teddy128(Teddy),
}

impl LiteralSearcher {
    /// Returns a matcher that never matches and never advances the input.
    pub fn empty() -> Self {
        Self::new(syntax::Literals::empty(), Matcher::Empty)
    }

    /// Returns a matcher for literal prefixes from the given set.
    pub fn prefixes(lits: syntax::Literals) -> Self {
        let matcher = Matcher::prefixes(&lits);
        Self::new(lits, matcher)
    }

    /// Returns a matcher for literal suffixes from the given set.
    pub fn suffixes(lits: syntax::Literals) -> Self {
        let matcher = Matcher::suffixes(&lits);
        Self::new(lits, matcher)
    }

    fn new(lits: syntax::Literals, matcher: Matcher) -> Self {
        let complete = lits.all_complete();
        LiteralSearcher {
            complete: complete,
            lcp: SingleSearch::new(lits.longest_common_prefix().to_vec()),
            lcs: SingleSearch::new(lits.longest_common_suffix().to_vec()),
            matcher: matcher,
        }
    }

    /// Returns true if all matches comprise the entire regular expression.
    ///
    /// This does not necessarily mean that a literal match implies a match
    /// of the regular expression. For example, the regular expresison `^a`
    /// is comprised of a single complete literal `a`, but the regular
    /// expression demands that it only match at the beginning of a string.
    pub fn complete(&self) -> bool {
        self.complete && self.len() > 0
    }

    /// Find the position of a literal in `haystack` if it exists.
    #[inline(always)] // reduces constant overhead
    pub fn find(&self, haystack: &[u8]) -> Option<(usize, usize)> {
        use self::Matcher::*;
        match self.matcher {
            Empty => Some((0, 0)),
            Bytes(ref sset) => sset.find(haystack).map(|i| (i, i + 1)),
            Single(ref s) => s.find(haystack).map(|i| (i, i + s.len())),
            AC(ref aut) => aut.find(haystack).next().map(|m| (m.start, m.end)),
            Teddy128(ref ted) => ted.find(haystack).map(|m| (m.start, m.end)),
        }
    }

    /// Like find, except matches must start at index `0`.
    pub fn find_start(&self, haystack: &[u8]) -> Option<(usize, usize)> {
        for lit in self.iter() {
            if lit.len() > haystack.len() {
                continue;
            }
            if lit == &haystack[0..lit.len()] {
                return Some((0, lit.len()));
            }
        }
        None
    }

    /// Like find, except matches must end at index `haystack.len()`.
    pub fn find_end(&self, haystack: &[u8]) -> Option<(usize, usize)> {
        for lit in self.iter() {
            if lit.len() > haystack.len() {
                continue;
            }
            if lit == &haystack[haystack.len() - lit.len()..] {
                return Some((haystack.len() - lit.len(), haystack.len()));
            }
        }
        None
    }

    /// Returns an iterator over all literals to be matched.
    pub fn iter(&self) -> LiteralIter {
        match self.matcher {
            Matcher::Empty => LiteralIter::Empty,
            Matcher::Bytes(ref sset) => LiteralIter::Bytes(&sset.dense),
            Matcher::Single(ref s) => LiteralIter::Single(&s.pat),
            Matcher::AC(ref ac) => LiteralIter::AC(ac.patterns()),
            Matcher::Teddy128(ref ted) => {
                LiteralIter::Teddy128(ted.patterns())
            }
        }
    }

    /// Returns a matcher for the longest common prefix of this matcher.
    pub fn lcp(&self) -> &SingleSearch {
        &self.lcp
    }

    /// Returns a matcher for the longest common suffix of this matcher.
    pub fn lcs(&self) -> &SingleSearch {
        &self.lcs
    }

    /// Returns true iff this prefix is empty.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of prefixes in this machine.
    pub fn len(&self) -> usize {
        use self::Matcher::*;
        match self.matcher {
            Empty => 0,
            Bytes(ref sset) => sset.dense.len(),
            Single(_) => 1,
            AC(ref aut) => aut.len(),
            Teddy128(ref ted) => ted.len(),
        }
    }

    /// Return the approximate heap usage of literals in bytes.
    pub fn approximate_size(&self) -> usize {
        use self::Matcher::*;
        match self.matcher {
            Empty => 0,
            Bytes(ref sset) => sset.approximate_size(),
            Single(ref single) => single.approximate_size(),
            AC(ref aut) => aut.heap_bytes(),
            Teddy128(ref ted) => ted.approximate_size(),
        }
    }
}

impl Matcher {
    fn prefixes(lits: &syntax::Literals) -> Self {
        let sset = SingleByteSet::prefixes(&lits);
        Matcher::new(lits, sset)
    }

    fn suffixes(lits: &syntax::Literals) -> Self {
        let sset = SingleByteSet::suffixes(&lits);
        Matcher::new(lits, sset)
    }

    fn new(lits: &syntax::Literals, sset: SingleByteSet) -> Self {
        if lits.literals().is_empty() {
            return Matcher::Empty;
        }
        if sset.dense.len() >= 26 {
            // Avoid trying to match a large number of single bytes.
            // This is *very* sensitive to a frequency analysis comparison
            // between the bytes in sset and the composition of the haystack.
            // No matter the size of sset, if its members all are rare in the
            // haystack, then it'd be worth using it. How to tune this... IDK.
            // ---AG
            return Matcher::Empty;
        }
        if sset.complete {
            return Matcher::Bytes(sset);
        }
        if lits.literals().len() == 1 {
            let lit = lits.literals()[0].to_vec();
            return Matcher::Single(SingleSearch::new(lit));
        }
        let is_aho_corasick_fast = sset.dense.len() == 1 && sset.all_ascii;
        if is_teddy_128_available() && !is_aho_corasick_fast {
            // Only try Teddy if Aho-Corasick can't use memchr on an ASCII
            // byte. Also, in its current form, Teddy doesn't scale well to
            // lots of literals.
            //
            // We impose the ASCII restriction since an alternation of
            // non-ASCII string literals in the same language is likely to all
            // start with the same byte. Even worse, the corpus being searched
            // probably has a similar composition, which ends up completely
            // negating the benefit of memchr.
            const MAX_TEDDY_LITERALS: usize = 32;
            if lits.literals().len() <= MAX_TEDDY_LITERALS {
                if let Some(ted) = Teddy::new(lits) {
                    return Matcher::Teddy128(ted);
                }
            }
            // Fallthrough to ol' reliable Aho-Corasick...
        }
        let pats = lits.literals().to_owned();
        Matcher::AC(AcAutomaton::new(pats).into_full())
    }
}

pub enum LiteralIter<'a> {
    Empty,
    Bytes(&'a [u8]),
    Single(&'a [u8]),
    AC(&'a [syntax::Lit]),
    Teddy128(&'a [Vec<u8>]),
}

impl<'a> Iterator for LiteralIter<'a> {
    type Item = &'a [u8];

    fn next(&mut self) -> Option<Self::Item> {
        match *self {
            LiteralIter::Empty => None,
            LiteralIter::Bytes(ref mut many) => {
                if many.is_empty() {
                    None
                } else {
                    let next = &many[0..1];
                    *many = &many[1..];
                    Some(next)
                }
            }
            LiteralIter::Single(ref mut one) => {
                if one.is_empty() {
                    None
                } else {
                    let next = &one[..];
                    *one = &[];
                    Some(next)
                }
            }
            LiteralIter::AC(ref mut lits) => {
                if lits.is_empty() {
                    None
                } else {
                    let next = &lits[0];
                    *lits = &lits[1..];
                    Some(&**next)
                }
            }
            LiteralIter::Teddy128(ref mut lits) => {
                if lits.is_empty() {
                    None
                } else {
                    let next = &lits[0];
                    *lits = &lits[1..];
                    Some(&**next)
                }
            }
        }
    }
}

#[derive(Clone, Debug)]
struct SingleByteSet {
    sparse: Vec<bool>,
    dense: Vec<u8>,
    complete: bool,
    all_ascii: bool,
}

impl SingleByteSet {
    fn new() -> SingleByteSet {
        SingleByteSet {
            sparse: vec![false; 256],
            dense: vec![],
            complete: true,
            all_ascii: true,
        }
    }

    fn prefixes(lits: &syntax::Literals) -> SingleByteSet {
        let mut sset = SingleByteSet::new();
        for lit in lits.literals() {
            sset.complete = sset.complete && lit.len() == 1;
            if let Some(&b) = lit.get(0) {
                if !sset.sparse[b as usize] {
                    if b > 0x7F {
                        sset.all_ascii = false;
                    }
                    sset.dense.push(b);
                    sset.sparse[b as usize] = true;
                }
            }
        }
        sset
    }

    fn suffixes(lits: &syntax::Literals) -> SingleByteSet {
        let mut sset = SingleByteSet::new();
        for lit in lits.literals() {
            sset.complete = sset.complete && lit.len() == 1;
            if let Some(&b) = lit.get(lit.len().checked_sub(1).unwrap()) {
                if !sset.sparse[b as usize] {
                    if b > 0x7F {
                        sset.all_ascii = false;
                    }
                    sset.dense.push(b);
                    sset.sparse[b as usize] = true;
                }
            }
        }
        sset
    }

    /// Faster find that special cases certain sizes to use memchr.
    #[inline(always)] // reduces constant overhead
    fn find(&self, text: &[u8]) -> Option<usize> {
        match self.dense.len() {
            0 => None,
            1 => memchr(self.dense[0], text),
            2 => memchr2(self.dense[0], self.dense[1], text),
            3 => memchr3(self.dense[0], self.dense[1], self.dense[2], text),
            _ => self._find(text),
        }
    }

    /// Generic find that works on any sized set.
    fn _find(&self, haystack: &[u8]) -> Option<usize> {
        for (i, &b) in haystack.iter().enumerate() {
            if self.sparse[b as usize] {
                return Some(i);
            }
        }
        None
    }

    fn approximate_size(&self) -> usize {
        (self.dense.len() * mem::size_of::<u8>())
        + (self.sparse.len() * mem::size_of::<bool>())
    }
}

/// Provides an implementation of fast subtring search.
///
/// This particular implementation is a Boyer-Moore variant, based on the
/// "tuned boyer moore" search from (Hume & Sunday, 1991). It has been tweaked
/// slightly to better use memchr.
///
/// memchr is so fast that we do everything we can to keep the loop in memchr
/// for as long as possible. The easiest way to do this is to intelligently
/// pick the byte to send to memchr. The best byte is the byte that occurs
/// least frequently in the haystack. Since doing frequency analysis on the
/// haystack is far too expensive, we compute a set of fixed frequencies up
/// front and hard code them in src/freqs.rs. Frequency analysis is done via
/// scripts/frequencies.py.
///
/// TODO(burntsushi): Add some amount of shifting to this.
#[derive(Clone, Debug)]
pub struct SingleSearch {
    /// The pattern.
    pat: Vec<u8>,
    /// The number of Unicode characters in the pattern. This is useful for
    /// determining the effective length of a pattern when deciding which
    /// optimizations to perform. A trailing incomplete UTF-8 sequence counts
    /// as one character.
    char_len: usize,
    /// The rarest byte in the pattern, according to pre-computed frequency
    /// analysis.
    rare1: u8,
    /// The offset of the rarest byte in `pat`.
    rare1i: usize,
    /// The second rarest byte in the pattern, according to pre-computed
    /// frequency analysis. (This may be equivalent to the rarest byte.)
    ///
    /// The second rarest byte is used as a type of guard for quickly detecting
    /// a mismatch after memchr locates an instance of the rarest byte. This
    /// is a hedge against pathological cases where the pre-computed frequency
    /// analysis may be off. (But of course, does not prevent *all*
    /// pathological cases.)
    rare2: u8,
    /// The offset of the second rarest byte in `pat`.
    rare2i: usize,
}

impl SingleSearch {
    fn new(pat: Vec<u8>) -> SingleSearch {
        fn freq_rank(b: u8) -> usize { BYTE_FREQUENCIES[b as usize] as usize }

        if pat.is_empty() {
            return SingleSearch::empty();
        }

        // Find the rarest two bytes. Try to make them distinct (but it's not
        // required).
        let mut rare1 = pat[0];
        let mut rare2 = pat[0];
        for b in pat[1..].iter().cloned() {
            if freq_rank(b) < freq_rank(rare1) {
                rare1 = b;
            }
        }
        for &b in &pat {
            if rare1 == rare2 {
                rare2 = b
            } else if b != rare1 && freq_rank(b) < freq_rank(rare2) {
                rare2 = b;
            }
        }

        // And find the offsets of their last occurrences.
        let rare1i = pat.iter().rposition(|&b| b == rare1).unwrap();
        let rare2i = pat.iter().rposition(|&b| b == rare2).unwrap();

        let char_len = char_len_lossy(&pat);
        SingleSearch {
            pat: pat,
            char_len: char_len,
            rare1: rare1,
            rare1i: rare1i,
            rare2: rare2,
            rare2i: rare2i,
        }
    }

    fn empty() -> SingleSearch {
        SingleSearch {
            pat: vec![],
            char_len: 0,
            rare1: 0,
            rare1i: 0,
            rare2: 0,
            rare2i: 0,
        }
    }

    #[inline(always)] // reduces constant overhead
    pub fn find(&self, haystack: &[u8]) -> Option<usize> {
        let pat = &*self.pat;
        if haystack.len() < pat.len() || pat.is_empty() {
            return None;
        }
        let mut i = self.rare1i;
        while i < haystack.len() {
            i += match memchr(self.rare1, &haystack[i..]) {
                None => return None,
                Some(i) => i,
            };
            let start = i - self.rare1i;
            let end = start + pat.len();
            if end > haystack.len() {
                return None;
            }
            let aligned = &haystack[start..end];
            if aligned[self.rare2i] == self.rare2 && aligned == &*self.pat {
                return Some(start);
            }
            i += 1;
        }
        None
    }

    #[inline(always)] // reduces constant overhead
    pub fn is_suffix(&self, text: &[u8]) -> bool {
        if text.len() < self.len() {
            return false;
        }
        &text[text.len() - self.len()..] == &*self.pat
    }

    pub fn len(&self) -> usize {
        self.pat.len()
    }

    pub fn char_len(&self) -> usize {
        self.char_len
    }

    fn approximate_size(&self) -> usize {
        self.pat.len() * mem::size_of::<u8>()
    }
}

fn char_len_lossy(bytes: &[u8]) -> usize {
    String::from_utf8_lossy(bytes).chars().count()
}