syn/fixup.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
use crate::classify;
use crate::expr::Expr;
use crate::precedence::Precedence;
pub(crate) struct FixupContext {
// Print expression such that it can be parsed back as a statement
// consisting of the original expression.
//
// The effect of this is for binary operators in statement position to set
// `leftmost_subexpression_in_stmt` when printing their left-hand operand.
//
// (match x {}) - 1; // match needs parens when LHS of binary operator
//
// match x {}; // not when its own statement
//
#[cfg(feature = "full")]
stmt: bool,
// This is the difference between:
//
// (match x {}) - 1; // subexpression needs parens
//
// let _ = match x {} - 1; // no parens
//
// There are 3 distinguishable contexts in which `print_expr` might be
// called with the expression `$match` as its argument, where `$match`
// represents an expression of kind `ExprKind::Match`:
//
// - stmt=false leftmost_subexpression_in_stmt=false
//
// Example: `let _ = $match - 1;`
//
// No parentheses required.
//
// - stmt=false leftmost_subexpression_in_stmt=true
//
// Example: `$match - 1;`
//
// Must parenthesize `($match)`, otherwise parsing back the output as a
// statement would terminate the statement after the closing brace of
// the match, parsing `-1;` as a separate statement.
//
// - stmt=true leftmost_subexpression_in_stmt=false
//
// Example: `$match;`
//
// No parentheses required.
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: bool,
// Print expression such that it can be parsed as a match arm.
//
// This is almost equivalent to `stmt`, but the grammar diverges a tiny bit
// between statements and match arms when it comes to braced macro calls.
// Macro calls with brace delimiter terminate a statement without a
// semicolon, but do not terminate a match-arm without comma.
//
// m! {} - 1; // two statements: a macro call followed by -1 literal
//
// match () {
// _ => m! {} - 1, // binary subtraction operator
// }
//
#[cfg(feature = "full")]
match_arm: bool,
// This is almost equivalent to `leftmost_subexpression_in_stmt`, other than
// for braced macro calls.
//
// If we have `m! {} - 1` as an expression, the leftmost subexpression
// `m! {}` will need to be parenthesized in the statement case but not the
// match-arm case.
//
// (m! {}) - 1; // subexpression needs parens
//
// match () {
// _ => m! {} - 1, // no parens
// }
//
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: bool,
// This is the difference between:
//
// if let _ = (Struct {}) {} // needs parens
//
// match () {
// () if let _ = Struct {} => {} // no parens
// }
//
#[cfg(feature = "full")]
parenthesize_exterior_struct_lit: bool,
// This is the difference between:
//
// let _ = 1 + return 1; // no parens if rightmost subexpression
//
// let _ = 1 + (return 1) + 1; // needs parens
//
#[cfg(feature = "full")]
parenthesize_exterior_jump: bool,
// This is the difference between:
//
// let _ = (return) - 1; // without paren, this would return -1
//
// let _ = return + 1; // no paren because '+' cannot begin expr
//
#[cfg(feature = "full")]
next_operator_can_begin_expr: bool,
// This is the difference between:
//
// let _ = x as u8 + T;
//
// let _ = (x as u8) < T;
//
// Without parens, the latter would want to parse `u8<T...` as a type.
next_operator_can_begin_generics: bool,
}
impl FixupContext {
/// The default amount of fixing is minimal fixing. Fixups should be turned
/// on in a targeted fashion where needed.
pub const NONE: Self = FixupContext {
#[cfg(feature = "full")]
stmt: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: false,
#[cfg(feature = "full")]
match_arm: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: false,
#[cfg(feature = "full")]
parenthesize_exterior_struct_lit: false,
#[cfg(feature = "full")]
parenthesize_exterior_jump: false,
#[cfg(feature = "full")]
next_operator_can_begin_expr: false,
next_operator_can_begin_generics: false,
};
/// Create the initial fixup for printing an expression in statement
/// position.
#[cfg(feature = "full")]
pub fn new_stmt() -> Self {
FixupContext {
stmt: true,
..FixupContext::NONE
}
}
/// Create the initial fixup for printing an expression as the right-hand
/// side of a match arm.
#[cfg(feature = "full")]
pub fn new_match_arm() -> Self {
FixupContext {
match_arm: true,
..FixupContext::NONE
}
}
/// Create the initial fixup for printing an expression as the "condition"
/// of an `if` or `while`. There are a few other positions which are
/// grammatically equivalent and also use this, such as the iterator
/// expression in `for` and the scrutinee in `match`.
#[cfg(feature = "full")]
pub fn new_condition() -> Self {
FixupContext {
parenthesize_exterior_struct_lit: true,
..FixupContext::NONE
}
}
/// Transform this fixup into the one that should apply when printing the
/// leftmost subexpression of the current expression.
///
/// The leftmost subexpression is any subexpression that has the same first
/// token as the current expression, but has a different last token.
///
/// For example in `$a + $b` and `$a.method()`, the subexpression `$a` is a
/// leftmost subexpression.
///
/// Not every expression has a leftmost subexpression. For example neither
/// `-$a` nor `[$a]` have one.
pub fn leftmost_subexpression(self) -> Self {
FixupContext {
#[cfg(feature = "full")]
stmt: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: self.stmt || self.leftmost_subexpression_in_stmt,
#[cfg(feature = "full")]
match_arm: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: self.match_arm
|| self.leftmost_subexpression_in_match_arm,
#[cfg(feature = "full")]
parenthesize_exterior_jump: true,
..self
}
}
/// Transform this fixup into the one that should apply when printing a
/// leftmost subexpression followed by a `.` or `?` token, which confer
/// different statement boundary rules compared to other leftmost
/// subexpressions.
pub fn leftmost_subexpression_with_dot(self) -> Self {
FixupContext {
#[cfg(feature = "full")]
stmt: self.stmt || self.leftmost_subexpression_in_stmt,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: false,
#[cfg(feature = "full")]
match_arm: self.match_arm || self.leftmost_subexpression_in_match_arm,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: false,
#[cfg(feature = "full")]
parenthesize_exterior_jump: true,
..self
}
}
/// Transform this fixup into the one that should apply when printing a
/// leftmost subexpression followed by punctuation that is legal as the
/// first token of an expression.
pub fn leftmost_subexpression_with_begin_operator(
self,
#[cfg(feature = "full")] next_operator_can_begin_expr: bool,
next_operator_can_begin_generics: bool,
) -> Self {
FixupContext {
#[cfg(feature = "full")]
next_operator_can_begin_expr,
next_operator_can_begin_generics,
..self.leftmost_subexpression()
}
}
/// Transform this fixup into the one that should apply when printing any
/// subexpression that is neither a leftmost subexpression nor surrounded in
/// delimiters.
///
/// This is for any subexpression that has a different first token than the
/// current expression, and is not surrounded by a paren/bracket/brace. For
/// example the `$b` in `$a + $b` and `-$b`, but not the one in `[$b]` or
/// `$a.f($b)`.
pub fn subsequent_subexpression(self) -> Self {
FixupContext {
#[cfg(feature = "full")]
stmt: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_stmt: false,
#[cfg(feature = "full")]
match_arm: false,
#[cfg(feature = "full")]
leftmost_subexpression_in_match_arm: false,
..self
}
}
/// Determine whether parentheses are needed around the given expression to
/// head off an unintended statement boundary.
///
/// The documentation on `FixupContext::leftmost_subexpression_in_stmt` has
/// examples.
#[cfg(feature = "full")]
pub fn would_cause_statement_boundary(self, expr: &Expr) -> bool {
(self.leftmost_subexpression_in_stmt && !classify::requires_semi_to_be_stmt(expr))
|| ((self.stmt || self.leftmost_subexpression_in_stmt) && matches!(expr, Expr::Let(_)))
|| (self.leftmost_subexpression_in_match_arm
&& !classify::requires_comma_to_be_match_arm(expr))
}
/// Determine whether parentheses are needed around the given `let`
/// scrutinee.
///
/// In `if let _ = $e {}`, some examples of `$e` that would need parentheses
/// are:
///
/// - `Struct {}.f()`, because otherwise the `{` would be misinterpreted
/// as the opening of the if's then-block.
///
/// - `true && false`, because otherwise this would be misinterpreted as a
/// "let chain".
#[cfg(feature = "full")]
pub fn needs_group_as_let_scrutinee(self, expr: &Expr) -> bool {
self.parenthesize_exterior_struct_lit && classify::confusable_with_adjacent_block(expr)
|| self.trailing_precedence(expr) < Precedence::Let
}
/// Determines the effective precedence of a left subexpression. Some
/// expressions have lower precedence when adjacent to particular operators.
pub fn leading_precedence(self, expr: &Expr) -> Precedence {
#[cfg(feature = "full")]
if self.next_operator_can_begin_expr {
// Decrease precedence of value-less jumps when followed by an
// operator that would otherwise get interpreted as beginning a
// value for the jump.
if let Expr::Break(_) | Expr::Return(_) | Expr::Yield(_) = expr {
return Precedence::Jump;
}
}
self.precedence(expr)
}
/// Determines the effective precedence of a right subexpression. Some
/// expressions have higher precedence on the right side of a binary
/// operator than on the left.
pub fn trailing_precedence(self, expr: &Expr) -> Precedence {
#[cfg(feature = "full")]
if !self.parenthesize_exterior_jump {
match expr {
// Increase precedence of expressions that extend to the end of
// current statement or group.
Expr::Break(_)
| Expr::Closure(_)
| Expr::Let(_)
| Expr::Return(_)
| Expr::Yield(_) => {
return Precedence::Prefix;
}
Expr::Range(e) if e.start.is_none() => return Precedence::Prefix,
_ => {}
}
}
self.precedence(expr)
}
fn precedence(self, expr: &Expr) -> Precedence {
if self.next_operator_can_begin_generics {
if let Expr::Cast(cast) = expr {
if classify::trailing_unparameterized_path(&cast.ty) {
return Precedence::MIN;
}
}
}
Precedence::of(expr)
}
}
impl Copy for FixupContext {}
impl Clone for FixupContext {
fn clone(&self) -> Self {
*self
}
}