zerovec/flexzerovec/
slice.rs

1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5use super::FlexZeroVec;
6use crate::ZeroVecError;
7use alloc::vec::Vec;
8use core::cmp::Ordering;
9use core::fmt;
10use core::mem;
11use core::ops::Range;
12
13const USIZE_WIDTH: usize = mem::size_of::<usize>();
14
15/// A zero-copy "slice" that efficiently represents `[usize]`.
16#[repr(C, packed)]
17pub struct FlexZeroSlice {
18    // Hard Invariant: 1 <= width <= USIZE_WIDTH (which is target_pointer_width)
19    // Soft Invariant: width == the width of the largest element
20    width: u8,
21    // Hard Invariant: data.len() % width == 0
22    data: [u8],
23}
24
25impl fmt::Debug for FlexZeroSlice {
26    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
27        self.to_vec().fmt(f)
28    }
29}
30
31impl PartialEq for FlexZeroSlice {
32    fn eq(&self, other: &Self) -> bool {
33        self.width == other.width && self.data == other.data
34    }
35}
36impl Eq for FlexZeroSlice {}
37
38/// Helper function to decode a little-endian "chunk" (byte slice of a specific length)
39/// into a `usize`. We cannot call `usize::from_le_bytes` directly because that function
40/// requires the high bits to be set to 0.
41#[inline]
42pub(crate) fn chunk_to_usize(chunk: &[u8], width: usize) -> usize {
43    debug_assert_eq!(chunk.len(), width);
44    let mut bytes = [0; USIZE_WIDTH];
45    #[allow(clippy::indexing_slicing)] // protected by debug_assert above
46    bytes[0..width].copy_from_slice(chunk);
47    usize::from_le_bytes(bytes)
48}
49
50impl FlexZeroSlice {
51    /// Constructs a new empty [`FlexZeroSlice`].
52    ///
53    /// ```
54    /// use zerovec::vecs::FlexZeroSlice;
55    ///
56    /// const EMPTY_SLICE: &FlexZeroSlice = FlexZeroSlice::new_empty();
57    ///
58    /// assert!(EMPTY_SLICE.is_empty());
59    /// assert_eq!(EMPTY_SLICE.len(), 0);
60    /// assert_eq!(EMPTY_SLICE.first(), None);
61    /// ```
62    #[inline]
63    pub const fn new_empty() -> &'static Self {
64        const ARR: &[u8] = &[1u8];
65        // Safety: The slice is a valid empty `FlexZeroSlice`
66        unsafe { Self::from_byte_slice_unchecked(ARR) }
67    }
68
69    /// Safely constructs a [`FlexZeroSlice`] from a byte array.
70    ///
71    /// # Examples
72    ///
73    /// ```
74    /// use zerovec::vecs::FlexZeroSlice;
75    ///
76    /// const FZS: &FlexZeroSlice = match FlexZeroSlice::parse_byte_slice(&[
77    ///     2, // width
78    ///     0x42, 0x00, // first value
79    ///     0x07, 0x09, // second value
80    ///     0xFF, 0xFF, // third value
81    /// ]) {
82    ///     Ok(v) => v,
83    ///     Err(_) => panic!("invalid bytes"),
84    /// };
85    ///
86    /// assert!(!FZS.is_empty());
87    /// assert_eq!(FZS.len(), 3);
88    /// assert_eq!(FZS.first(), Some(0x0042));
89    /// assert_eq!(FZS.get(0), Some(0x0042));
90    /// assert_eq!(FZS.get(1), Some(0x0907));
91    /// assert_eq!(FZS.get(2), Some(0xFFFF));
92    /// assert_eq!(FZS.get(3), None);
93    /// assert_eq!(FZS.last(), Some(0xFFFF));
94    /// ```
95    pub const fn parse_byte_slice(bytes: &[u8]) -> Result<&Self, ZeroVecError> {
96        let (width_u8, data) = match bytes.split_first() {
97            Some(v) => v,
98            None => {
99                return Err(ZeroVecError::InvalidLength {
100                    ty: "FlexZeroSlice",
101                    len: 0,
102                })
103            }
104        };
105        let width = *width_u8 as usize;
106        if width < 1 || width > USIZE_WIDTH {
107            return Err(ZeroVecError::ParseError {
108                ty: "FlexZeroSlice",
109            });
110        }
111        if data.len() % width != 0 {
112            return Err(ZeroVecError::InvalidLength {
113                ty: "FlexZeroSlice",
114                len: bytes.len(),
115            });
116        }
117        // Safety: All hard invariants have been checked.
118        // Note: The soft invariant requires a linear search that we don't do here.
119        Ok(unsafe { Self::from_byte_slice_unchecked(bytes) })
120    }
121
122    /// Constructs a [`FlexZeroSlice`] without checking invariants.
123    ///
124    /// # Panics
125    ///
126    /// Panics if `bytes` is empty.
127    ///
128    /// # Safety
129    ///
130    /// Must be called on a valid [`FlexZeroSlice`] byte array.
131    #[inline]
132    pub const unsafe fn from_byte_slice_unchecked(bytes: &[u8]) -> &Self {
133        // Safety: The DST of FlexZeroSlice is a pointer to the `width` element and has a metadata
134        // equal to the length of the `data` field, which will be one less than the length of the
135        // overall array.
136        #[allow(clippy::panic)] // panic is documented in function contract
137        if bytes.is_empty() {
138            panic!("from_byte_slice_unchecked called with empty slice")
139        }
140        let slice = core::ptr::slice_from_raw_parts(bytes.as_ptr(), bytes.len() - 1);
141        &*(slice as *const Self)
142    }
143
144    #[inline]
145    pub(crate) unsafe fn from_byte_slice_mut_unchecked(bytes: &mut [u8]) -> &mut Self {
146        // Safety: See comments in `from_byte_slice_unchecked`
147        let remainder = core::ptr::slice_from_raw_parts_mut(bytes.as_mut_ptr(), bytes.len() - 1);
148        &mut *(remainder as *mut Self)
149    }
150
151    /// Returns this slice as its underlying `&[u8]` byte buffer representation.
152    ///
153    /// Useful for serialization.
154    ///
155    /// # Example
156    ///
157    /// ```
158    /// use zerovec::vecs::FlexZeroSlice;
159    ///
160    /// let bytes: &[u8] = &[2, 0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x80];
161    /// let fzv = FlexZeroSlice::parse_byte_slice(bytes).expect("valid bytes");
162    ///
163    /// assert_eq!(bytes, fzv.as_bytes());
164    /// ```
165    #[inline]
166    pub fn as_bytes(&self) -> &[u8] {
167        // Safety: See comments in `from_byte_slice_unchecked`
168        unsafe {
169            core::slice::from_raw_parts(self as *const Self as *const u8, self.data.len() + 1)
170        }
171    }
172
173    /// Borrows this `FlexZeroSlice` as a [`FlexZeroVec::Borrowed`].
174    #[inline]
175    pub const fn as_flexzerovec(&self) -> FlexZeroVec {
176        FlexZeroVec::Borrowed(self)
177    }
178
179    /// Returns the number of elements in the `FlexZeroSlice`.
180    #[inline]
181    pub fn len(&self) -> usize {
182        self.data.len() / self.get_width()
183    }
184
185    #[inline]
186    pub(crate) fn get_width(&self) -> usize {
187        usize::from(self.width)
188    }
189
190    /// Returns whether there are zero elements in the `FlexZeroSlice`.
191    #[inline]
192    pub fn is_empty(&self) -> bool {
193        self.data.len() == 0
194    }
195
196    /// Gets the element at `index`, or `None` if `index >= self.len()`.
197    ///
198    /// # Examples
199    ///
200    /// ```
201    /// use zerovec::vecs::FlexZeroVec;
202    ///
203    /// let fzv: FlexZeroVec = [22, 33].iter().copied().collect();
204    /// assert_eq!(fzv.get(0), Some(22));
205    /// assert_eq!(fzv.get(1), Some(33));
206    /// assert_eq!(fzv.get(2), None);
207    /// ```
208    #[inline]
209    pub fn get(&self, index: usize) -> Option<usize> {
210        if index >= self.len() {
211            None
212        } else {
213            Some(unsafe { self.get_unchecked(index) })
214        }
215    }
216
217    /// Gets the element at `index` as a chunk of bytes, or `None` if `index >= self.len()`.
218    #[inline]
219    pub(crate) fn get_chunk(&self, index: usize) -> Option<&[u8]> {
220        let w = self.get_width();
221        self.data.get(index * w..index * w + w)
222    }
223
224    /// Gets the element at `index` without checking bounds.
225    ///
226    /// # Safety
227    ///
228    /// `index` must be in-range.
229    #[inline]
230    pub unsafe fn get_unchecked(&self, index: usize) -> usize {
231        match self.width {
232            1 => *self.data.get_unchecked(index) as usize,
233            2 => {
234                let ptr = self.data.as_ptr().add(index * 2);
235                u16::from_le_bytes(core::ptr::read(ptr as *const [u8; 2])) as usize
236            }
237            _ => {
238                let mut bytes = [0; USIZE_WIDTH];
239                let w = self.get_width();
240                assert!(w <= USIZE_WIDTH);
241                let ptr = self.data.as_ptr().add(index * w);
242                core::ptr::copy_nonoverlapping(ptr, bytes.as_mut_ptr(), w);
243                usize::from_le_bytes(bytes)
244            }
245        }
246    }
247
248    /// Gets the first element of the slice, or `None` if the slice is empty.
249    #[inline]
250    pub fn first(&self) -> Option<usize> {
251        let w = self.get_width();
252        self.data.get(0..w).map(|chunk| chunk_to_usize(chunk, w))
253    }
254
255    /// Gets the last element of the slice, or `None` if the slice is empty.
256    #[inline]
257    pub fn last(&self) -> Option<usize> {
258        let l = self.data.len();
259        if l == 0 {
260            None
261        } else {
262            let w = self.get_width();
263            self.data
264                .get(l - w..l)
265                .map(|chunk| chunk_to_usize(chunk, w))
266        }
267    }
268
269    /// Gets an iterator over the elements of the slice as `usize`.
270    #[inline]
271    pub fn iter(
272        &self,
273    ) -> impl DoubleEndedIterator<Item = usize> + '_ + ExactSizeIterator<Item = usize> {
274        let w = self.get_width();
275        self.data
276            .chunks_exact(w)
277            .map(move |chunk| chunk_to_usize(chunk, w))
278    }
279
280    /// Gets an iterator over pairs of elements.
281    ///
282    /// The second element of the final pair is `None`.
283    ///
284    /// # Examples
285    ///
286    /// ```
287    /// use zerovec::vecs::FlexZeroVec;
288    ///
289    /// let nums: &[usize] = &[211, 281, 421, 461];
290    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
291    ///
292    /// let mut pairs_it = fzv.iter_pairs();
293    ///
294    /// assert_eq!(pairs_it.next(), Some((211, Some(281))));
295    /// assert_eq!(pairs_it.next(), Some((281, Some(421))));
296    /// assert_eq!(pairs_it.next(), Some((421, Some(461))));
297    /// assert_eq!(pairs_it.next(), Some((461, None)));
298    /// assert_eq!(pairs_it.next(), None);
299    /// ```
300    pub fn iter_pairs(&self) -> impl Iterator<Item = (usize, Option<usize>)> + '_ {
301        self.iter().zip(self.iter().skip(1).map(Some).chain([None]))
302    }
303
304    /// Creates a `Vec<usize>` from a [`FlexZeroSlice`] (or `FlexZeroVec`).
305    ///
306    /// # Examples
307    ///
308    /// ```
309    /// use zerovec::vecs::FlexZeroVec;
310    ///
311    /// let nums: &[usize] = &[211, 281, 421, 461];
312    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
313    /// let vec: Vec<usize> = fzv.to_vec();
314    ///
315    /// assert_eq!(nums, vec.as_slice());
316    /// ```
317    #[inline]
318    pub fn to_vec(&self) -> Vec<usize> {
319        self.iter().collect()
320    }
321
322    /// Binary searches a sorted `FlexZeroSlice` for the given `usize` value.
323    ///
324    /// # Examples
325    ///
326    /// ```
327    /// use zerovec::vecs::FlexZeroVec;
328    ///
329    /// let nums: &[usize] = &[211, 281, 421, 461];
330    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
331    ///
332    /// assert_eq!(fzv.binary_search(0), Err(0));
333    /// assert_eq!(fzv.binary_search(211), Ok(0));
334    /// assert_eq!(fzv.binary_search(250), Err(1));
335    /// assert_eq!(fzv.binary_search(281), Ok(1));
336    /// assert_eq!(fzv.binary_search(300), Err(2));
337    /// assert_eq!(fzv.binary_search(421), Ok(2));
338    /// assert_eq!(fzv.binary_search(450), Err(3));
339    /// assert_eq!(fzv.binary_search(461), Ok(3));
340    /// assert_eq!(fzv.binary_search(462), Err(4));
341    /// ```
342    #[inline]
343    pub fn binary_search(&self, needle: usize) -> Result<usize, usize> {
344        self.binary_search_by(|probe| probe.cmp(&needle))
345    }
346
347    /// Binary searches a sorted range of a `FlexZeroSlice` for the given `usize` value.
348    ///
349    /// The indices in the return value are relative to the start of the range.
350    ///
351    /// # Examples
352    ///
353    /// ```
354    /// use zerovec::vecs::FlexZeroVec;
355    ///
356    /// // Make a FlexZeroVec with two sorted ranges: 0..3 and 3..5
357    /// let nums: &[usize] = &[111, 222, 444, 333, 555];
358    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
359    ///
360    /// // Search in the first range:
361    /// assert_eq!(fzv.binary_search_in_range(0, 0..3), Some(Err(0)));
362    /// assert_eq!(fzv.binary_search_in_range(111, 0..3), Some(Ok(0)));
363    /// assert_eq!(fzv.binary_search_in_range(199, 0..3), Some(Err(1)));
364    /// assert_eq!(fzv.binary_search_in_range(222, 0..3), Some(Ok(1)));
365    /// assert_eq!(fzv.binary_search_in_range(399, 0..3), Some(Err(2)));
366    /// assert_eq!(fzv.binary_search_in_range(444, 0..3), Some(Ok(2)));
367    /// assert_eq!(fzv.binary_search_in_range(999, 0..3), Some(Err(3)));
368    ///
369    /// // Search in the second range:
370    /// assert_eq!(fzv.binary_search_in_range(0, 3..5), Some(Err(0)));
371    /// assert_eq!(fzv.binary_search_in_range(333, 3..5), Some(Ok(0)));
372    /// assert_eq!(fzv.binary_search_in_range(399, 3..5), Some(Err(1)));
373    /// assert_eq!(fzv.binary_search_in_range(555, 3..5), Some(Ok(1)));
374    /// assert_eq!(fzv.binary_search_in_range(999, 3..5), Some(Err(2)));
375    ///
376    /// // Out-of-bounds range:
377    /// assert_eq!(fzv.binary_search_in_range(0, 4..6), None);
378    /// ```
379    #[inline]
380    pub fn binary_search_in_range(
381        &self,
382        needle: usize,
383        range: Range<usize>,
384    ) -> Option<Result<usize, usize>> {
385        self.binary_search_in_range_by(|probe| probe.cmp(&needle), range)
386    }
387
388    /// Binary searches a sorted `FlexZeroSlice` according to a predicate function.
389    #[inline]
390    pub fn binary_search_by(
391        &self,
392        predicate: impl FnMut(usize) -> Ordering,
393    ) -> Result<usize, usize> {
394        debug_assert!(self.len() <= self.data.len());
395        // Safety: self.len() <= self.data.len()
396        let scaled_slice = unsafe { self.data.get_unchecked(0..self.len()) };
397        self.binary_search_impl(predicate, scaled_slice)
398    }
399
400    /// Binary searches a sorted range of a `FlexZeroSlice` according to a predicate function.
401    ///
402    /// The indices in the return value are relative to the start of the range.
403    #[inline]
404    pub fn binary_search_in_range_by(
405        &self,
406        predicate: impl FnMut(usize) -> Ordering,
407        range: Range<usize>,
408    ) -> Option<Result<usize, usize>> {
409        // Note: We need to check bounds separately, since `self.data.get(range)` does not return
410        // bounds errors, since it is indexing directly into the upscaled data array
411        if range.start > self.len() || range.end > self.len() {
412            return None;
413        }
414        let scaled_slice = self.data.get(range)?;
415        Some(self.binary_search_impl(predicate, scaled_slice))
416    }
417
418    /// Binary searches a `FlexZeroSlice` by its indices.
419    ///
420    /// The `predicate` function is passed in-bounds indices into the `FlexZeroSlice`.
421    #[inline]
422    pub fn binary_search_with_index(
423        &self,
424        predicate: impl FnMut(usize) -> Ordering,
425    ) -> Result<usize, usize> {
426        debug_assert!(self.len() <= self.data.len());
427        // Safety: self.len() <= self.data.len()
428        let scaled_slice = unsafe { self.data.get_unchecked(0..self.len()) };
429        self.binary_search_with_index_impl(predicate, scaled_slice)
430    }
431
432    /// Binary searches a range of a `FlexZeroSlice` by its indices.
433    ///
434    /// The `predicate` function is passed in-bounds indices into the `FlexZeroSlice`, which are
435    /// relative to the start of the entire slice.
436    ///
437    /// The indices in the return value are relative to the start of the range.
438    #[inline]
439    pub fn binary_search_in_range_with_index(
440        &self,
441        predicate: impl FnMut(usize) -> Ordering,
442        range: Range<usize>,
443    ) -> Option<Result<usize, usize>> {
444        // Note: We need to check bounds separately, since `self.data.get(range)` does not return
445        // bounds errors, since it is indexing directly into the upscaled data array
446        if range.start > self.len() || range.end > self.len() {
447            return None;
448        }
449        let scaled_slice = self.data.get(range)?;
450        Some(self.binary_search_with_index_impl(predicate, scaled_slice))
451    }
452
453    /// # Safety
454    ///
455    /// `scaled_slice` must be a subslice of `self.data`
456    #[inline]
457    fn binary_search_impl(
458        &self,
459        mut predicate: impl FnMut(usize) -> Ordering,
460        scaled_slice: &[u8],
461    ) -> Result<usize, usize> {
462        self.binary_search_with_index_impl(
463            |index| {
464                // Safety: The contract of `binary_search_with_index_impl` says `index` is in bounds
465                let actual_probe = unsafe { self.get_unchecked(index) };
466                predicate(actual_probe)
467            },
468            scaled_slice,
469        )
470    }
471
472    /// `predicate` is passed a valid index as an argument.
473    ///
474    /// # Safety
475    ///
476    /// `scaled_slice` must be a subslice of `self.data`
477    fn binary_search_with_index_impl(
478        &self,
479        mut predicate: impl FnMut(usize) -> Ordering,
480        scaled_slice: &[u8],
481    ) -> Result<usize, usize> {
482        // This code is an absolute atrocity. This code is not a place of honor. This
483        // code is known to the State of California to cause cancer.
484        //
485        // Unfortunately, the stdlib's `binary_search*` functions can only operate on slices.
486        // We do not have a slice. We have something we can .get() and index on, but that is not
487        // a slice.
488        //
489        // The `binary_search*` functions also do not have a variant where they give you the element's
490        // index, which we could otherwise use to directly index `self`.
491        // We do have `self.indices`, but these are indices into a byte buffer, which cannot in
492        // isolation be used to recoup the logical index of the element they refer to.
493        //
494        // However, `binary_search_by()` provides references to the elements of the slice being iterated.
495        // Since the layout of Rust slices is well-defined, we can do pointer arithmetic on these references
496        // to obtain the index being used by the search.
497        //
498        // It's worth noting that the slice we choose to search is irrelevant, as long as it has the appropriate
499        // length. `self.indices` is defined to have length `self.len()`, so it is convenient to use
500        // here and does not require additional allocations.
501        //
502        // The alternative to doing this is to implement our own binary search. This is significantly less fun.
503
504        // Note: We always use zero_index relative to the whole indices array, even if we are
505        // only searching a subslice of it.
506        let zero_index = self.data.as_ptr() as *const _ as usize;
507        scaled_slice.binary_search_by(|probe: &_| {
508            // Note: `scaled_slice` is a slice of u8
509            let index = probe as *const _ as usize - zero_index;
510            predicate(index)
511        })
512    }
513}
514
515#[inline]
516pub(crate) fn get_item_width(item_bytes: &[u8; USIZE_WIDTH]) -> usize {
517    USIZE_WIDTH - item_bytes.iter().rev().take_while(|b| **b == 0).count()
518}
519
520/// Pre-computed information about a pending insertion operation.
521///
522/// Do not create one of these directly; call `get_insert_info()`.
523pub(crate) struct InsertInfo {
524    /// The bytes to be inserted, with zero-fill.
525    pub item_bytes: [u8; USIZE_WIDTH],
526    /// The new item width after insertion.
527    pub new_width: usize,
528    /// The new number of items in the vector: self.len() after insertion.
529    pub new_count: usize,
530    /// The new number of bytes required for the entire slice (self.data.len() + 1).
531    pub new_bytes_len: usize,
532}
533
534impl FlexZeroSlice {
535    /// Compute the [`InsertInfo`] for inserting the specified item anywhere into the vector.
536    ///
537    /// # Panics
538    ///
539    /// Panics if inserting the element would require allocating more than `usize::MAX` bytes.
540    pub(crate) fn get_insert_info(&self, new_item: usize) -> InsertInfo {
541        let item_bytes = new_item.to_le_bytes();
542        let item_width = get_item_width(&item_bytes);
543        let old_width = self.get_width();
544        let new_width = core::cmp::max(old_width, item_width);
545        let new_count = 1 + (self.data.len() / old_width);
546        #[allow(clippy::unwrap_used)] // panic is documented in function contract
547        let new_bytes_len = new_count
548            .checked_mul(new_width)
549            .unwrap()
550            .checked_add(1)
551            .unwrap();
552        InsertInfo {
553            item_bytes,
554            new_width,
555            new_count,
556            new_bytes_len,
557        }
558    }
559
560    /// This function should be called on a slice with a data array `new_data_len` long
561    /// which previously held `new_count - 1` elements.
562    ///
563    /// After calling this function, all bytes in the slice will have been written.
564    pub(crate) fn insert_impl(&mut self, insert_info: InsertInfo, insert_index: usize) {
565        let InsertInfo {
566            item_bytes,
567            new_width,
568            new_count,
569            new_bytes_len,
570        } = insert_info;
571        debug_assert!(new_width <= USIZE_WIDTH);
572        debug_assert!(new_width >= self.get_width());
573        debug_assert!(insert_index < new_count);
574        debug_assert_eq!(new_bytes_len, new_count * new_width + 1);
575        debug_assert_eq!(new_bytes_len, self.data.len() + 1);
576        // For efficiency, calculate how many items we can skip copying.
577        let lower_i = if new_width == self.get_width() {
578            insert_index
579        } else {
580            0
581        };
582        // Copy elements starting from the end into the new empty section of the vector.
583        // Note: We could copy fully in place, but we need to set 0 bytes for the high bytes,
584        // so we stage the new value on the stack.
585        for i in (lower_i..new_count).rev() {
586            let bytes_to_write = if i == insert_index {
587                item_bytes
588            } else {
589                let j = if i > insert_index { i - 1 } else { i };
590                debug_assert!(j < new_count - 1);
591                // Safety: j is in range (assertion on previous line), and it has not been
592                // overwritten yet since we are walking backwards.
593                unsafe { self.get_unchecked(j).to_le_bytes() }
594            };
595            // Safety: The vector has capacity for `new_width` items at the new index, which is
596            // later in the array than the bytes that we read above.
597            unsafe {
598                core::ptr::copy_nonoverlapping(
599                    bytes_to_write.as_ptr(),
600                    self.data.as_mut_ptr().add(new_width * i),
601                    new_width,
602                );
603            }
604        }
605        self.width = new_width as u8;
606    }
607}
608
609/// Pre-computed information about a pending removal operation.
610///
611/// Do not create one of these directly; call `get_remove_info()` or `get_sorted_pop_info()`.
612pub(crate) struct RemoveInfo {
613    /// The index of the item to be removed.
614    pub remove_index: usize,
615    /// The new item width after insertion.
616    pub new_width: usize,
617    /// The new number of items in the vector: self.len() after insertion.
618    pub new_count: usize,
619    /// The new number of bytes required for the entire slice (self.data.len() + 1).
620    pub new_bytes_len: usize,
621}
622
623impl FlexZeroSlice {
624    /// Compute the [`RemoveInfo`] for removing the item at the specified index.
625    pub(crate) fn get_remove_info(&self, remove_index: usize) -> RemoveInfo {
626        debug_assert!(remove_index < self.len());
627        // Safety: remove_index is in range (assertion on previous line)
628        let item_bytes = unsafe { self.get_unchecked(remove_index).to_le_bytes() };
629        let item_width = get_item_width(&item_bytes);
630        let old_width = self.get_width();
631        let old_count = self.data.len() / old_width;
632        let new_width = if item_width < old_width {
633            old_width
634        } else {
635            debug_assert_eq!(old_width, item_width);
636            // We might be removing the widest element. If so, we need to scale down.
637            let mut largest_width = 1;
638            for i in 0..old_count {
639                if i == remove_index {
640                    continue;
641                }
642                // Safety: i is in range (between 0 and old_count)
643                let curr_bytes = unsafe { self.get_unchecked(i).to_le_bytes() };
644                let curr_width = get_item_width(&curr_bytes);
645                largest_width = core::cmp::max(curr_width, largest_width);
646            }
647            largest_width
648        };
649        let new_count = old_count - 1;
650        // Note: the following line won't overflow because we are making the slice shorter.
651        let new_bytes_len = new_count * new_width + 1;
652        RemoveInfo {
653            remove_index,
654            new_width,
655            new_count,
656            new_bytes_len,
657        }
658    }
659
660    /// Returns the [`RemoveInfo`] for removing the last element. Should be called
661    /// on a slice sorted in ascending order.
662    ///
663    /// This is more efficient than `get_remove_info()` because it doesn't require a
664    /// linear traversal of the vector in order to calculate `new_width`.
665    pub(crate) fn get_sorted_pop_info(&self) -> RemoveInfo {
666        debug_assert!(!self.is_empty());
667        let remove_index = self.len() - 1;
668        let old_count = self.len();
669        let new_width = if old_count == 1 {
670            1
671        } else {
672            // Safety: the FlexZeroSlice has at least two elements
673            let largest_item = unsafe { self.get_unchecked(remove_index - 1).to_le_bytes() };
674            get_item_width(&largest_item)
675        };
676        let new_count = old_count - 1;
677        // Note: the following line won't overflow because we are making the slice shorter.
678        let new_bytes_len = new_count * new_width + 1;
679        RemoveInfo {
680            remove_index,
681            new_width,
682            new_count,
683            new_bytes_len,
684        }
685    }
686
687    /// This function should be called on a valid slice.
688    ///
689    /// After calling this function, the slice data should be truncated to `new_data_len` bytes.
690    pub(crate) fn remove_impl(&mut self, remove_info: RemoveInfo) {
691        let RemoveInfo {
692            remove_index,
693            new_width,
694            new_count,
695            ..
696        } = remove_info;
697        debug_assert!(new_width <= self.get_width());
698        debug_assert!(new_count < self.len());
699        // For efficiency, calculate how many items we can skip copying.
700        let lower_i = if new_width == self.get_width() {
701            remove_index
702        } else {
703            0
704        };
705        // Copy elements starting from the beginning to compress the vector to fewer bytes.
706        for i in lower_i..new_count {
707            let j = if i < remove_index { i } else { i + 1 };
708            // Safety: j is in range because j <= new_count < self.len()
709            let bytes_to_write = unsafe { self.get_unchecked(j).to_le_bytes() };
710            // Safety: The bytes are being copied to a section of the array that is not after
711            // the section of the array that currently holds the bytes.
712            unsafe {
713                core::ptr::copy_nonoverlapping(
714                    bytes_to_write.as_ptr(),
715                    self.data.as_mut_ptr().add(new_width * i),
716                    new_width,
717                );
718            }
719        }
720        self.width = new_width as u8;
721    }
722}