bigdecimal/arithmetic/
cbrt.rsuse crate::*;
use num_bigint::BigUint;
use rounding::NonDigitRoundingData;
use stdlib::num::NonZeroU64;
pub(crate) fn impl_cbrt_int_scale(n: &BigInt, scale: i64, ctx: &Context) -> BigDecimal {
let rounding_data = NonDigitRoundingData {
sign: n.sign(),
mode: ctx.rounding_mode(),
};
impl_cbrt_uint_scale((n.magnitude(), scale).into(), ctx.precision(), rounding_data)
}
pub(crate) fn impl_cbrt_uint_scale(
n: WithScale<&BigUint>,
precision: NonZeroU64,
rounding_data: NonDigitRoundingData,
) -> BigDecimal {
if n.is_zero() {
let biguint = BigInt::from_biguint(Sign::Plus, n.value.clone());
return BigDecimal::new(biguint, n.scale / 3);
}
let integer_digit_count = count_decimal_digits_uint(n.value);
let extra_rounding_digit_count = 4;
let required_precision = precision.get() + extra_rounding_digit_count;
let required_precision = 3 * required_precision;
let mut exp_shift = required_precision.saturating_sub(integer_digit_count);
let shifted_scale = n.scale + exp_shift as i64;
let (mut new_scale, remainder) = shifted_scale.div_rem(&3);
match remainder.cmp(&0) {
Ordering::Greater => {
new_scale += 1;
exp_shift += (3 - remainder) as u64;
}
Ordering::Less => {
exp_shift += remainder.neg() as u64;
}
Ordering::Equal => {
}
}
let mut integer_digits = stdlib::borrow::Cow::Borrowed(n.value);
if exp_shift > 0 {
arithmetic::multiply_by_ten_to_the_uint(
integer_digits.to_mut(), exp_shift
);
}
let result_digits = integer_digits.nth_root(3);
let result_digits_count = count_decimal_digits_uint(&result_digits);
debug_assert!(result_digits_count > precision.get());
let digits_to_trim = result_digits_count - precision.get();
debug_assert_ne!(digits_to_trim, 0);
debug_assert!((result_digits_count as i64 - count_decimal_digits_uint(&integer_digits) as i64 / 3).abs() < 2);
new_scale -= digits_to_trim as i64;
let divisor = ten_to_the_uint(digits_to_trim);
let (mut result_digits, remainder) = result_digits.div_rem(&divisor);
let remainder_digits = remainder.to_radix_le(10);
let insig_digit0;
let trailing_digits;
if remainder_digits.len() < digits_to_trim as usize {
insig_digit0 = 0;
trailing_digits = remainder_digits.as_slice();
} else {
let (&d, rest) = remainder_digits.split_last().unwrap();
insig_digit0 = d;
trailing_digits = rest;
}
let insig_data = rounding::InsigData::from_digit_and_lazy_trailing_zeros(
rounding_data, insig_digit0, || { trailing_digits.iter().all(Zero::is_zero) }
);
let sig_digit = (&result_digits % 10u8).to_u8().unwrap();
let rounded_digit = insig_data.round_digit(sig_digit);
let rounding_term = rounded_digit - sig_digit;
result_digits += rounding_term;
let result = BigInt::from_biguint(rounding_data.sign, result_digits);
BigDecimal::new(result, new_scale)
}
#[cfg(test)]
mod test {
use super::*;
use stdlib::num::NonZeroU64;
macro_rules! impl_test {
($name:ident; $input:literal => $expected:literal) => {
#[test]
fn $name() {
let n: BigDecimal = $input.parse().unwrap();
let value = n.cbrt();
let expected = $expected.parse().unwrap();
assert_eq!(value, expected);
}
};
($name:ident; prec=$prec:literal; round=$round:ident; $input:literal => $expected:literal) => {
#[test]
fn $name() {
let ctx = Context::new(NonZeroU64::new($prec).unwrap(), RoundingMode::$round);
let n: BigDecimal = $input.parse().unwrap();
let value = n.cbrt_with_context(&ctx);
let expected = $expected.parse().unwrap();
assert_eq!(value, expected);
}
};
}
mod default {
use super::*;
impl_test!(case_0; "0.00" => "0");
impl_test!(case_1; "1.00" => "1");
impl_test!(case_1d001; "1.001" => "1.000333222283909495175449559955220102010284758197360454054345461242739715702641939155238095670636841");
impl_test!(case_10; "10" => "2.154434690031883721759293566519350495259344942192108582489235506346411106648340800185441503543243276");
impl_test!(case_13409d179789484375; "13409.179789484375" => "23.7575");
impl_test!(case_n59283293e25; "-59283293e25" => "-84006090355.84281237113712383191213626687332139035750444925827809487776780721673264524620270275301685");
impl_test!(case_94213372931en127; "94213372931e-127" => "2.112049945275324414051072540210070583697242797173805198575907094646677475250362108901530353886613160E-39");
}
impl_test!(case_prec15_down_10; prec=15; round=Down; "10" => "2.15443469003188");
impl_test!(case_prec6_up_0d979970546636727; prec=6; round=Up; "0.979970546636727" => "0.993279");
impl_test!(case_1037d495615705321421375_full; "1037.495615705321421375" => "10.123455");
impl_test!(case_1037d495615705321421375_prec7_halfdown; prec=7; round=HalfDown; "1037.495615705321421375" => "10.12345");
impl_test!(case_1037d495615705321421375_prec7_halfeven; prec=7; round=HalfEven; "1037.495615705321421375" => "10.12346");
impl_test!(case_1037d495615705321421375_prec7_halfup; prec=7; round=HalfUp; "1037.495615705321421375" => "10.12346");
impl_test!(case_0d014313506928855520728400001_full; "0.014313506928855520728400001" => "0.242800001");
impl_test!(case_0d014313506928855520728400001_prec6_down; prec=6; round=Down; "0.014313506928855520728400001" => "0.242800");
impl_test!(case_0d014313506928855520728400001_prec6_up; prec=6; round=Up; "0.014313506928855520728400001" => "0.242801");
impl_test!(case_4151902e20_prec16_halfup; prec=16; round=HalfUp; "4151902e20" => "746017527.6855992");
impl_test!(case_4151902e20_prec16_up; prec=16; round=Up; "4151902e20" => "746017527.6855993");
impl_test!(case_4151902e20_prec17_up; prec=17; round=Up; "4151902e20" => "746017527.68559921");
impl_test!(case_4151902e20_prec18_up; prec=18; round=Up; "4151902e20" => "746017527.685599209");
impl_test!(case_1850846e201_prec14_up; prec=16; round=Up; "1850846e201" => "1.227788123885769e69");
impl_test!(case_6d3797558642427987505823530913e85_prec16_up; prec=160; round=Up; "6.3797558642427987505823530913E+85" => "3995778017e19");
impl_test!(case_88573536600476899341824_prec20_up; prec=20; round=Up; "88573536600476899341824" => "44576024");
impl_test!(case_88573536600476899341824_prec7_up; prec=7; round=Up; "88573536600476899341824" => "4457603e1");
impl_test!(case_833636d150970875_prec5_up; prec=5; round=Up; "833636.150970875" => "94.115000");
impl_test!(case_833636d150970875_prec5_halfup; prec=5; round=HalfUp; "833636.150970875" => "94.115");
impl_test!(case_833636d150970875_prec4_halfup; prec=4; round=HalfUp; "833636.150970875" => "94.12");
impl_test!(case_833636d150970875_prec20_up; prec=20; round=Up; "833636.150970875" => "94.115000");
#[cfg(property_tests)]
mod prop {
use super::*;
use proptest::*;
use num_traits::FromPrimitive;
proptest! {
#[test]
fn cbrt_of_cube_is_self(f: f64, prec in 15..50u64) {
prop_assume!(f.is_normal());
let n = BigDecimal::from_f64(f).unwrap().with_prec(prec);
let n_cubed = n.cube();
let x = n_cubed.cbrt();
prop_assert_eq!(x, n);
}
}
}
}