bigdecimal/arithmetic/
cbrt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
//! Implementation of cube-root algorithm

use crate::*;
use num_bigint::BigUint;
use rounding::NonDigitRoundingData;
use stdlib::num::NonZeroU64;


pub(crate) fn impl_cbrt_int_scale(n: &BigInt, scale: i64, ctx: &Context) -> BigDecimal {
    let rounding_data = NonDigitRoundingData {
        sign: n.sign(),
        mode: ctx.rounding_mode(),
    };

    impl_cbrt_uint_scale((n.magnitude(), scale).into(), ctx.precision(), rounding_data)
}

/// implementation of cuberoot - always positive
pub(crate) fn impl_cbrt_uint_scale(
    n: WithScale<&BigUint>,
    precision: NonZeroU64,
    // contains sign and rounding mode
    rounding_data: NonDigitRoundingData,
) -> BigDecimal {
    if n.is_zero() {
        let biguint = BigInt::from_biguint(Sign::Plus, n.value.clone());
        return BigDecimal::new(biguint, n.scale / 3);
    }

    // count number of digits in the decimal
    let integer_digit_count = count_decimal_digits_uint(n.value);

    // extra digits to use for rounding
    let extra_rounding_digit_count = 4;

    // required number of digits for precision and rounding
    let required_precision = precision.get() + extra_rounding_digit_count;
    let required_precision = 3 * required_precision;

    // number of extra zeros to add to end of integer_digits
    let mut exp_shift = required_precision.saturating_sub(integer_digit_count);

    // effective scale after multiplying by 10^exp_shift
    // (we've added that many trailing zeros after)
    let shifted_scale = n.scale + exp_shift as i64;

    let (mut new_scale, remainder) = shifted_scale.div_rem(&3);

    match remainder.cmp(&0) {
        Ordering::Greater => {
            new_scale += 1;
            exp_shift += (3 - remainder) as u64;
        }
        Ordering::Less => {
            exp_shift += remainder.neg() as u64;
        }
        Ordering::Equal => {
        }
    }

    // clone-on-write copy of digits
    let mut integer_digits = stdlib::borrow::Cow::Borrowed(n.value);

    // add required trailing zeros to integer_digits
    if exp_shift > 0 {
        arithmetic::multiply_by_ten_to_the_uint(
            integer_digits.to_mut(), exp_shift
        );
    }

    let result_digits = integer_digits.nth_root(3);
    let result_digits_count = count_decimal_digits_uint(&result_digits);
    debug_assert!(result_digits_count > precision.get());

    let digits_to_trim = result_digits_count - precision.get();
    debug_assert_ne!(digits_to_trim, 0);
    debug_assert!((result_digits_count as i64 - count_decimal_digits_uint(&integer_digits) as i64 / 3).abs() < 2);

    new_scale -= digits_to_trim as i64;

    let divisor = ten_to_the_uint(digits_to_trim);
    let (mut result_digits, remainder) = result_digits.div_rem(&divisor);

    let remainder_digits = remainder.to_radix_le(10);
    let insig_digit0;
    let trailing_digits;
    if remainder_digits.len() < digits_to_trim as usize {
        // leading zeros
        insig_digit0 = 0;
        trailing_digits = remainder_digits.as_slice();
    } else {
        let (&d, rest) = remainder_digits.split_last().unwrap();
        insig_digit0 = d;
        trailing_digits = rest;
    }

    let insig_data = rounding::InsigData::from_digit_and_lazy_trailing_zeros(
        rounding_data, insig_digit0, || { trailing_digits.iter().all(Zero::is_zero) }
    );

    // lowest digit to round
    let sig_digit = (&result_digits % 10u8).to_u8().unwrap();
    let rounded_digit = insig_data.round_digit(sig_digit);

    let rounding_term = rounded_digit - sig_digit;
    result_digits += rounding_term;

    let result = BigInt::from_biguint(rounding_data.sign, result_digits);

    BigDecimal::new(result, new_scale)
}


#[cfg(test)]
mod test {
    use super::*;
    use stdlib::num::NonZeroU64;

    macro_rules! impl_test {
        ($name:ident; $input:literal => $expected:literal) => {
            #[test]
            fn $name() {
                let n: BigDecimal = $input.parse().unwrap();
                let value = n.cbrt();

                let expected = $expected.parse().unwrap();
                assert_eq!(value, expected);
            }
        };
        ($name:ident; prec=$prec:literal; round=$round:ident; $input:literal => $expected:literal) => {
            #[test]
            fn $name() {
                let ctx = Context::new(NonZeroU64::new($prec).unwrap(), RoundingMode::$round);
                let n: BigDecimal = $input.parse().unwrap();
                let value = n.cbrt_with_context(&ctx);

                let expected = $expected.parse().unwrap();
                assert_eq!(value, expected);
            }
        };
    }

    mod default {
        use super::*;

        impl_test!(case_0; "0.00" => "0");
        impl_test!(case_1; "1.00" => "1");
        impl_test!(case_1d001; "1.001" => "1.000333222283909495175449559955220102010284758197360454054345461242739715702641939155238095670636841");
        impl_test!(case_10; "10" => "2.154434690031883721759293566519350495259344942192108582489235506346411106648340800185441503543243276");
        impl_test!(case_13409d179789484375; "13409.179789484375" => "23.7575");
        impl_test!(case_n59283293e25; "-59283293e25" => "-84006090355.84281237113712383191213626687332139035750444925827809487776780721673264524620270275301685");
        impl_test!(case_94213372931en127; "94213372931e-127" => "2.112049945275324414051072540210070583697242797173805198575907094646677475250362108901530353886613160E-39");
    }

    impl_test!(case_prec15_down_10; prec=15; round=Down; "10" => "2.15443469003188");
    impl_test!(case_prec6_up_0d979970546636727; prec=6; round=Up; "0.979970546636727" => "0.993279");

    impl_test!(case_1037d495615705321421375_full; "1037.495615705321421375" => "10.123455");
    impl_test!(case_1037d495615705321421375_prec7_halfdown; prec=7; round=HalfDown; "1037.495615705321421375" => "10.12345");
    impl_test!(case_1037d495615705321421375_prec7_halfeven; prec=7; round=HalfEven; "1037.495615705321421375" => "10.12346");
    impl_test!(case_1037d495615705321421375_prec7_halfup; prec=7; round=HalfUp; "1037.495615705321421375" => "10.12346");

    impl_test!(case_0d014313506928855520728400001_full; "0.014313506928855520728400001" => "0.242800001");
    impl_test!(case_0d014313506928855520728400001_prec6_down; prec=6; round=Down; "0.014313506928855520728400001" => "0.242800");
    impl_test!(case_0d014313506928855520728400001_prec6_up; prec=6; round=Up; "0.014313506928855520728400001" => "0.242801");

    impl_test!(case_4151902e20_prec16_halfup; prec=16; round=HalfUp; "4151902e20" => "746017527.6855992");
    impl_test!(case_4151902e20_prec16_up; prec=16; round=Up; "4151902e20" => "746017527.6855993");
    impl_test!(case_4151902e20_prec17_up; prec=17; round=Up; "4151902e20" => "746017527.68559921");
    impl_test!(case_4151902e20_prec18_up; prec=18; round=Up; "4151902e20" => "746017527.685599209");
    // impl_test!(case_4151902e20_prec18_up; prec=18; round=Up; "4151902e20" => "746017527.685599209");

    impl_test!(case_1850846e201_prec14_up; prec=16; round=Up; "1850846e201" => "1.227788123885769e69");

    impl_test!(case_6d3797558642427987505823530913e85_prec16_up; prec=160; round=Up; "6.3797558642427987505823530913E+85" => "3995778017e19");

    impl_test!(case_88573536600476899341824_prec20_up; prec=20; round=Up; "88573536600476899341824" => "44576024");
    impl_test!(case_88573536600476899341824_prec7_up; prec=7; round=Up; "88573536600476899341824" => "4457603e1");

    impl_test!(case_833636d150970875_prec5_up; prec=5; round=Up; "833636.150970875" => "94.115000");
    impl_test!(case_833636d150970875_prec5_halfup; prec=5; round=HalfUp; "833636.150970875" => "94.115");
    impl_test!(case_833636d150970875_prec4_halfup; prec=4; round=HalfUp; "833636.150970875" => "94.12");
    impl_test!(case_833636d150970875_prec20_up; prec=20; round=Up; "833636.150970875" => "94.115000");

    #[cfg(property_tests)]
    mod prop {
        use super::*;
        use proptest::*;
        use num_traits::FromPrimitive;

        proptest! {
            #[test]
            fn cbrt_of_cube_is_self(f: f64, prec in 15..50u64) {
                // ignore non-normal numbers
                prop_assume!(f.is_normal());

                let n = BigDecimal::from_f64(f).unwrap().with_prec(prec);
                let n_cubed = n.cube();
                let x = n_cubed.cbrt();
                prop_assert_eq!(x, n);
            }
        }
    }
}