indexmap/
map.rs

1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19    Drain, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice, Values, ValuesMut,
20};
21pub use self::mutable::MutableEntryKey;
22pub use self::mutable::MutableKeys;
23pub use self::slice::Slice;
24
25#[cfg(feature = "rayon")]
26pub use crate::rayon::map as rayon;
27
28use ::core::cmp::Ordering;
29use ::core::fmt;
30use ::core::hash::{BuildHasher, Hash, Hasher};
31use ::core::mem;
32use ::core::ops::{Index, IndexMut, RangeBounds};
33use alloc::boxed::Box;
34use alloc::vec::Vec;
35
36#[cfg(feature = "std")]
37use std::collections::hash_map::RandomState;
38
39use self::core::IndexMapCore;
40use crate::util::{third, try_simplify_range};
41use crate::{Bucket, Entries, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
42
43/// A hash table where the iteration order of the key-value pairs is independent
44/// of the hash values of the keys.
45///
46/// The interface is closely compatible with the standard
47/// [`HashMap`][std::collections::HashMap],
48/// but also has additional features.
49///
50/// # Order
51///
52/// The key-value pairs have a consistent order that is determined by
53/// the sequence of insertion and removal calls on the map. The order does
54/// not depend on the keys or the hash function at all.
55///
56/// All iterators traverse the map in *the order*.
57///
58/// The insertion order is preserved, with **notable exceptions** like the
59/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
60/// Methods such as [`.sort_by()`][Self::sort_by] of
61/// course result in a new order, depending on the sorting order.
62///
63/// # Indices
64///
65/// The key-value pairs are indexed in a compact range without holes in the
66/// range `0..self.len()`. For example, the method `.get_full` looks up the
67/// index for a key, and the method `.get_index` looks up the key-value pair by
68/// index.
69///
70/// # Examples
71///
72/// ```
73/// use indexmap::IndexMap;
74///
75/// // count the frequency of each letter in a sentence.
76/// let mut letters = IndexMap::new();
77/// for ch in "a short treatise on fungi".chars() {
78///     *letters.entry(ch).or_insert(0) += 1;
79/// }
80///
81/// assert_eq!(letters[&'s'], 2);
82/// assert_eq!(letters[&'t'], 3);
83/// assert_eq!(letters[&'u'], 1);
84/// assert_eq!(letters.get(&'y'), None);
85/// ```
86#[cfg(feature = "std")]
87pub struct IndexMap<K, V, S = RandomState> {
88    pub(crate) core: IndexMapCore<K, V>,
89    hash_builder: S,
90}
91#[cfg(not(feature = "std"))]
92pub struct IndexMap<K, V, S> {
93    pub(crate) core: IndexMapCore<K, V>,
94    hash_builder: S,
95}
96
97impl<K, V, S> Clone for IndexMap<K, V, S>
98where
99    K: Clone,
100    V: Clone,
101    S: Clone,
102{
103    fn clone(&self) -> Self {
104        IndexMap {
105            core: self.core.clone(),
106            hash_builder: self.hash_builder.clone(),
107        }
108    }
109
110    fn clone_from(&mut self, other: &Self) {
111        self.core.clone_from(&other.core);
112        self.hash_builder.clone_from(&other.hash_builder);
113    }
114}
115
116impl<K, V, S> Entries for IndexMap<K, V, S> {
117    type Entry = Bucket<K, V>;
118
119    #[inline]
120    fn into_entries(self) -> Vec<Self::Entry> {
121        self.core.into_entries()
122    }
123
124    #[inline]
125    fn as_entries(&self) -> &[Self::Entry] {
126        self.core.as_entries()
127    }
128
129    #[inline]
130    fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
131        self.core.as_entries_mut()
132    }
133
134    fn with_entries<F>(&mut self, f: F)
135    where
136        F: FnOnce(&mut [Self::Entry]),
137    {
138        self.core.with_entries(f);
139    }
140}
141
142impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
143where
144    K: fmt::Debug,
145    V: fmt::Debug,
146{
147    #[cfg(not(feature = "test_debug"))]
148    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
149        f.debug_map().entries(self.iter()).finish()
150    }
151
152    #[cfg(feature = "test_debug")]
153    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
154        // Let the inner `IndexMapCore` print all of its details
155        f.debug_struct("IndexMap")
156            .field("core", &self.core)
157            .finish()
158    }
159}
160
161#[cfg(feature = "std")]
162#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
163impl<K, V> IndexMap<K, V> {
164    /// Create a new map. (Does not allocate.)
165    #[inline]
166    pub fn new() -> Self {
167        Self::with_capacity(0)
168    }
169
170    /// Create a new map with capacity for `n` key-value pairs. (Does not
171    /// allocate if `n` is zero.)
172    ///
173    /// Computes in **O(n)** time.
174    #[inline]
175    pub fn with_capacity(n: usize) -> Self {
176        Self::with_capacity_and_hasher(n, <_>::default())
177    }
178}
179
180impl<K, V, S> IndexMap<K, V, S> {
181    /// Create a new map with capacity for `n` key-value pairs. (Does not
182    /// allocate if `n` is zero.)
183    ///
184    /// Computes in **O(n)** time.
185    #[inline]
186    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
187        if n == 0 {
188            Self::with_hasher(hash_builder)
189        } else {
190            IndexMap {
191                core: IndexMapCore::with_capacity(n),
192                hash_builder,
193            }
194        }
195    }
196
197    /// Create a new map with `hash_builder`.
198    ///
199    /// This function is `const`, so it
200    /// can be called in `static` contexts.
201    pub const fn with_hasher(hash_builder: S) -> Self {
202        IndexMap {
203            core: IndexMapCore::new(),
204            hash_builder,
205        }
206    }
207
208    /// Return the number of elements the map can hold without reallocating.
209    ///
210    /// This number is a lower bound; the map might be able to hold more,
211    /// but is guaranteed to be able to hold at least this many.
212    ///
213    /// Computes in **O(1)** time.
214    pub fn capacity(&self) -> usize {
215        self.core.capacity()
216    }
217
218    /// Return a reference to the map's `BuildHasher`.
219    pub fn hasher(&self) -> &S {
220        &self.hash_builder
221    }
222
223    /// Return the number of key-value pairs in the map.
224    ///
225    /// Computes in **O(1)** time.
226    #[inline]
227    pub fn len(&self) -> usize {
228        self.core.len()
229    }
230
231    /// Returns true if the map contains no elements.
232    ///
233    /// Computes in **O(1)** time.
234    #[inline]
235    pub fn is_empty(&self) -> bool {
236        self.len() == 0
237    }
238
239    /// Return an iterator over the key-value pairs of the map, in their order
240    pub fn iter(&self) -> Iter<'_, K, V> {
241        Iter::new(self.as_entries())
242    }
243
244    /// Return an iterator over the key-value pairs of the map, in their order
245    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
246        IterMut::new(self.as_entries_mut())
247    }
248
249    /// Return an iterator over the keys of the map, in their order
250    pub fn keys(&self) -> Keys<'_, K, V> {
251        Keys::new(self.as_entries())
252    }
253
254    /// Return an owning iterator over the keys of the map, in their order
255    pub fn into_keys(self) -> IntoKeys<K, V> {
256        IntoKeys::new(self.into_entries())
257    }
258
259    /// Return an iterator over the values of the map, in their order
260    pub fn values(&self) -> Values<'_, K, V> {
261        Values::new(self.as_entries())
262    }
263
264    /// Return an iterator over mutable references to the values of the map,
265    /// in their order
266    pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
267        ValuesMut::new(self.as_entries_mut())
268    }
269
270    /// Return an owning iterator over the values of the map, in their order
271    pub fn into_values(self) -> IntoValues<K, V> {
272        IntoValues::new(self.into_entries())
273    }
274
275    /// Remove all key-value pairs in the map, while preserving its capacity.
276    ///
277    /// Computes in **O(n)** time.
278    pub fn clear(&mut self) {
279        self.core.clear();
280    }
281
282    /// Shortens the map, keeping the first `len` elements and dropping the rest.
283    ///
284    /// If `len` is greater than the map's current length, this has no effect.
285    pub fn truncate(&mut self, len: usize) {
286        self.core.truncate(len);
287    }
288
289    /// Clears the `IndexMap` in the given index range, returning those
290    /// key-value pairs as a drain iterator.
291    ///
292    /// The range may be any type that implements [`RangeBounds<usize>`],
293    /// including all of the `std::ops::Range*` types, or even a tuple pair of
294    /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
295    /// like `map.drain(..)`.
296    ///
297    /// This shifts down all entries following the drained range to fill the
298    /// gap, and keeps the allocated memory for reuse.
299    ///
300    /// ***Panics*** if the starting point is greater than the end point or if
301    /// the end point is greater than the length of the map.
302    #[track_caller]
303    pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
304    where
305        R: RangeBounds<usize>,
306    {
307        Drain::new(self.core.drain(range))
308    }
309
310    /// Splits the collection into two at the given index.
311    ///
312    /// Returns a newly allocated map containing the elements in the range
313    /// `[at, len)`. After the call, the original map will be left containing
314    /// the elements `[0, at)` with its previous capacity unchanged.
315    ///
316    /// ***Panics*** if `at > len`.
317    #[track_caller]
318    pub fn split_off(&mut self, at: usize) -> Self
319    where
320        S: Clone,
321    {
322        Self {
323            core: self.core.split_off(at),
324            hash_builder: self.hash_builder.clone(),
325        }
326    }
327
328    /// Reserve capacity for `additional` more key-value pairs.
329    ///
330    /// Computes in **O(n)** time.
331    pub fn reserve(&mut self, additional: usize) {
332        self.core.reserve(additional);
333    }
334
335    /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
336    ///
337    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
338    /// frequent re-allocations. However, the underlying data structures may still have internal
339    /// capacity requirements, and the allocator itself may give more space than requested, so this
340    /// cannot be relied upon to be precisely minimal.
341    ///
342    /// Computes in **O(n)** time.
343    pub fn reserve_exact(&mut self, additional: usize) {
344        self.core.reserve_exact(additional);
345    }
346
347    /// Try to reserve capacity for `additional` more key-value pairs.
348    ///
349    /// Computes in **O(n)** time.
350    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
351        self.core.try_reserve(additional)
352    }
353
354    /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
355    ///
356    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
357    /// frequent re-allocations. However, the underlying data structures may still have internal
358    /// capacity requirements, and the allocator itself may give more space than requested, so this
359    /// cannot be relied upon to be precisely minimal.
360    ///
361    /// Computes in **O(n)** time.
362    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
363        self.core.try_reserve_exact(additional)
364    }
365
366    /// Shrink the capacity of the map as much as possible.
367    ///
368    /// Computes in **O(n)** time.
369    pub fn shrink_to_fit(&mut self) {
370        self.core.shrink_to(0);
371    }
372
373    /// Shrink the capacity of the map with a lower limit.
374    ///
375    /// Computes in **O(n)** time.
376    pub fn shrink_to(&mut self, min_capacity: usize) {
377        self.core.shrink_to(min_capacity);
378    }
379}
380
381impl<K, V, S> IndexMap<K, V, S>
382where
383    K: Hash + Eq,
384    S: BuildHasher,
385{
386    /// Insert a key-value pair in the map.
387    ///
388    /// If an equivalent key already exists in the map: the key remains and
389    /// retains in its place in the order, its corresponding value is updated
390    /// with `value`, and the older value is returned inside `Some(_)`.
391    ///
392    /// If no equivalent key existed in the map: the new key-value pair is
393    /// inserted, last in order, and `None` is returned.
394    ///
395    /// Computes in **O(1)** time (amortized average).
396    ///
397    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
398    /// or [`insert_full`][Self::insert_full] if you need to get the index of
399    /// the corresponding key-value pair.
400    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
401        self.insert_full(key, value).1
402    }
403
404    /// Insert a key-value pair in the map, and get their index.
405    ///
406    /// If an equivalent key already exists in the map: the key remains and
407    /// retains in its place in the order, its corresponding value is updated
408    /// with `value`, and the older value is returned inside `(index, Some(_))`.
409    ///
410    /// If no equivalent key existed in the map: the new key-value pair is
411    /// inserted, last in order, and `(index, None)` is returned.
412    ///
413    /// Computes in **O(1)** time (amortized average).
414    ///
415    /// See also [`entry`][Self::entry] if you want to insert *or* modify.
416    pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
417        let hash = self.hash(&key);
418        self.core.insert_full(hash, key, value)
419    }
420
421    /// Insert a key-value pair in the map at its ordered position among sorted keys.
422    ///
423    /// This is equivalent to finding the position with
424    /// [`binary_search_keys`][Self::binary_search_keys], then either updating
425    /// it or calling [`insert_before`][Self::insert_before] for a new key.
426    ///
427    /// If the sorted key is found in the map, its corresponding value is
428    /// updated with `value`, and the older value is returned inside
429    /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
430    /// the sorted position, and `(index, None)` is returned.
431    ///
432    /// If the existing keys are **not** already sorted, then the insertion
433    /// index is unspecified (like [`slice::binary_search`]), but the key-value
434    /// pair is moved to or inserted at that position regardless.
435    ///
436    /// Computes in **O(n)** time (average). Instead of repeating calls to
437    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
438    /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
439    /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
440    pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
441    where
442        K: Ord,
443    {
444        match self.binary_search_keys(&key) {
445            Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
446            Err(i) => self.insert_before(i, key, value),
447        }
448    }
449
450    /// Insert a key-value pair in the map before the entry at the given index, or at the end.
451    ///
452    /// If an equivalent key already exists in the map: the key remains and
453    /// is moved to the new position in the map, its corresponding value is updated
454    /// with `value`, and the older value is returned inside `Some(_)`. The returned index
455    /// will either be the given index or one less, depending on how the entry moved.
456    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
457    ///
458    /// If no equivalent key existed in the map: the new key-value pair is
459    /// inserted exactly at the given index, and `None` is returned.
460    ///
461    /// ***Panics*** if `index` is out of bounds.
462    /// Valid indices are `0..=map.len()` (inclusive).
463    ///
464    /// Computes in **O(n)** time (average).
465    ///
466    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
467    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
468    ///
469    /// # Examples
470    ///
471    /// ```
472    /// use indexmap::IndexMap;
473    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
474    ///
475    /// // The new key '*' goes exactly at the given index.
476    /// assert_eq!(map.get_index_of(&'*'), None);
477    /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
478    /// assert_eq!(map.get_index_of(&'*'), Some(10));
479    ///
480    /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
481    /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
482    /// assert_eq!(map.get_index_of(&'a'), Some(9));
483    /// assert_eq!(map.get_index_of(&'*'), Some(10));
484    ///
485    /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
486    /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
487    /// assert_eq!(map.get_index_of(&'z'), Some(10));
488    /// assert_eq!(map.get_index_of(&'*'), Some(11));
489    ///
490    /// // Moving or inserting before the endpoint is also valid.
491    /// assert_eq!(map.len(), 27);
492    /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
493    /// assert_eq!(map.get_index_of(&'*'), Some(26));
494    /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
495    /// assert_eq!(map.get_index_of(&'+'), Some(27));
496    /// assert_eq!(map.len(), 28);
497    /// ```
498    #[track_caller]
499    pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
500        let len = self.len();
501
502        assert!(
503            index <= len,
504            "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
505        );
506
507        match self.entry(key) {
508            Entry::Occupied(mut entry) => {
509                if index > entry.index() {
510                    // Some entries will shift down when this one moves up,
511                    // so "insert before index" becomes "move to index - 1",
512                    // keeping the entry at the original index unmoved.
513                    index -= 1;
514                }
515                let old = mem::replace(entry.get_mut(), value);
516                entry.move_index(index);
517                (index, Some(old))
518            }
519            Entry::Vacant(entry) => {
520                entry.shift_insert(index, value);
521                (index, None)
522            }
523        }
524    }
525
526    /// Insert a key-value pair in the map at the given index.
527    ///
528    /// If an equivalent key already exists in the map: the key remains and
529    /// is moved to the given index in the map, its corresponding value is updated
530    /// with `value`, and the older value is returned inside `Some(_)`.
531    /// Note that existing entries **cannot** be moved to `index == map.len()`!
532    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
533    ///
534    /// If no equivalent key existed in the map: the new key-value pair is
535    /// inserted at the given index, and `None` is returned.
536    ///
537    /// ***Panics*** if `index` is out of bounds.
538    /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
539    /// `0..=map.len()` (inclusive) when inserting a new key.
540    ///
541    /// Computes in **O(n)** time (average).
542    ///
543    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
544    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
545    ///
546    /// # Examples
547    ///
548    /// ```
549    /// use indexmap::IndexMap;
550    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
551    ///
552    /// // The new key '*' goes exactly at the given index.
553    /// assert_eq!(map.get_index_of(&'*'), None);
554    /// assert_eq!(map.shift_insert(10, '*', ()), None);
555    /// assert_eq!(map.get_index_of(&'*'), Some(10));
556    ///
557    /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
558    /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
559    /// assert_eq!(map.get_index_of(&'a'), Some(10));
560    /// assert_eq!(map.get_index_of(&'*'), Some(9));
561    ///
562    /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
563    /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
564    /// assert_eq!(map.get_index_of(&'z'), Some(9));
565    /// assert_eq!(map.get_index_of(&'*'), Some(10));
566    ///
567    /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
568    /// assert_eq!(map.len(), 27);
569    /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
570    /// assert_eq!(map.get_index_of(&'*'), Some(26));
571    /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
572    /// assert_eq!(map.get_index_of(&'+'), Some(27));
573    /// assert_eq!(map.len(), 28);
574    /// ```
575    ///
576    /// ```should_panic
577    /// use indexmap::IndexMap;
578    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
579    ///
580    /// // This is an invalid index for moving an existing key!
581    /// map.shift_insert(map.len(), 'a', ());
582    /// ```
583    #[track_caller]
584    pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
585        let len = self.len();
586        match self.entry(key) {
587            Entry::Occupied(mut entry) => {
588                assert!(
589                    index < len,
590                    "index out of bounds: the len is {len} but the index is {index}"
591                );
592
593                let old = mem::replace(entry.get_mut(), value);
594                entry.move_index(index);
595                Some(old)
596            }
597            Entry::Vacant(entry) => {
598                assert!(
599                    index <= len,
600                    "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
601                );
602
603                entry.shift_insert(index, value);
604                None
605            }
606        }
607    }
608
609    /// Get the given key’s corresponding entry in the map for insertion and/or
610    /// in-place manipulation.
611    ///
612    /// Computes in **O(1)** time (amortized average).
613    pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
614        let hash = self.hash(&key);
615        self.core.entry(hash, key)
616    }
617
618    /// Creates a splicing iterator that replaces the specified range in the map
619    /// with the given `replace_with` key-value iterator and yields the removed
620    /// items. `replace_with` does not need to be the same length as `range`.
621    ///
622    /// The `range` is removed even if the iterator is not consumed until the
623    /// end. It is unspecified how many elements are removed from the map if the
624    /// `Splice` value is leaked.
625    ///
626    /// The input iterator `replace_with` is only consumed when the `Splice`
627    /// value is dropped. If a key from the iterator matches an existing entry
628    /// in the map (outside of `range`), then the value will be updated in that
629    /// position. Otherwise, the new key-value pair will be inserted in the
630    /// replaced `range`.
631    ///
632    /// ***Panics*** if the starting point is greater than the end point or if
633    /// the end point is greater than the length of the map.
634    ///
635    /// # Examples
636    ///
637    /// ```
638    /// use indexmap::IndexMap;
639    ///
640    /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
641    /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
642    /// let removed: Vec<_> = map.splice(2..4, new).collect();
643    ///
644    /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
645    /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
646    /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
647    /// ```
648    #[track_caller]
649    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
650    where
651        R: RangeBounds<usize>,
652        I: IntoIterator<Item = (K, V)>,
653    {
654        Splice::new(self, range, replace_with.into_iter())
655    }
656
657    /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
658    ///
659    /// This is equivalent to calling [`insert`][Self::insert] for each
660    /// key-value pair from `other` in order, which means that for keys that
661    /// already exist in `self`, their value is updated in the current position.
662    ///
663    /// # Examples
664    ///
665    /// ```
666    /// use indexmap::IndexMap;
667    ///
668    /// // Note: Key (3) is present in both maps.
669    /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
670    /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
671    /// let old_capacity = b.capacity();
672    ///
673    /// a.append(&mut b);
674    ///
675    /// assert_eq!(a.len(), 5);
676    /// assert_eq!(b.len(), 0);
677    /// assert_eq!(b.capacity(), old_capacity);
678    ///
679    /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
680    /// assert_eq!(a[&3], "d"); // "c" was overwritten.
681    /// ```
682    pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
683        self.extend(other.drain(..));
684    }
685}
686
687impl<K, V, S> IndexMap<K, V, S>
688where
689    S: BuildHasher,
690{
691    pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
692        let mut h = self.hash_builder.build_hasher();
693        key.hash(&mut h);
694        HashValue(h.finish() as usize)
695    }
696
697    /// Return `true` if an equivalent to `key` exists in the map.
698    ///
699    /// Computes in **O(1)** time (average).
700    pub fn contains_key<Q>(&self, key: &Q) -> bool
701    where
702        Q: ?Sized + Hash + Equivalent<K>,
703    {
704        self.get_index_of(key).is_some()
705    }
706
707    /// Return a reference to the value stored for `key`, if it is present,
708    /// else `None`.
709    ///
710    /// Computes in **O(1)** time (average).
711    pub fn get<Q>(&self, key: &Q) -> Option<&V>
712    where
713        Q: ?Sized + Hash + Equivalent<K>,
714    {
715        if let Some(i) = self.get_index_of(key) {
716            let entry = &self.as_entries()[i];
717            Some(&entry.value)
718        } else {
719            None
720        }
721    }
722
723    /// Return references to the key-value pair stored for `key`,
724    /// if it is present, else `None`.
725    ///
726    /// Computes in **O(1)** time (average).
727    pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
728    where
729        Q: ?Sized + Hash + Equivalent<K>,
730    {
731        if let Some(i) = self.get_index_of(key) {
732            let entry = &self.as_entries()[i];
733            Some((&entry.key, &entry.value))
734        } else {
735            None
736        }
737    }
738
739    /// Return item index, key and value
740    pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
741    where
742        Q: ?Sized + Hash + Equivalent<K>,
743    {
744        if let Some(i) = self.get_index_of(key) {
745            let entry = &self.as_entries()[i];
746            Some((i, &entry.key, &entry.value))
747        } else {
748            None
749        }
750    }
751
752    /// Return item index, if it exists in the map
753    ///
754    /// Computes in **O(1)** time (average).
755    pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
756    where
757        Q: ?Sized + Hash + Equivalent<K>,
758    {
759        match self.as_entries() {
760            [] => None,
761            [x] => key.equivalent(&x.key).then_some(0),
762            _ => {
763                let hash = self.hash(key);
764                self.core.get_index_of(hash, key)
765            }
766        }
767    }
768
769    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
770    where
771        Q: ?Sized + Hash + Equivalent<K>,
772    {
773        if let Some(i) = self.get_index_of(key) {
774            let entry = &mut self.as_entries_mut()[i];
775            Some(&mut entry.value)
776        } else {
777            None
778        }
779    }
780
781    pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
782    where
783        Q: ?Sized + Hash + Equivalent<K>,
784    {
785        if let Some(i) = self.get_index_of(key) {
786            let entry = &mut self.as_entries_mut()[i];
787            Some((i, &entry.key, &mut entry.value))
788        } else {
789            None
790        }
791    }
792
793    /// Return the values for `N` keys. If any key is duplicated, this function will panic.
794    ///
795    /// # Examples
796    ///
797    /// ```
798    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
799    /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
800    /// ```
801    pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
802    where
803        Q: ?Sized + Hash + Equivalent<K>,
804    {
805        let indices = keys.map(|key| self.get_index_of(key));
806        match self.as_mut_slice().get_disjoint_opt_mut(indices) {
807            Err(GetDisjointMutError::IndexOutOfBounds) => {
808                unreachable!(
809                    "Internal error: indices should never be OOB as we got them from get_index_of"
810                );
811            }
812            Err(GetDisjointMutError::OverlappingIndices) => {
813                panic!("duplicate keys found");
814            }
815            Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
816        }
817    }
818
819    /// Remove the key-value pair equivalent to `key` and return
820    /// its value.
821    ///
822    /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
823    /// entry's position with the last element, and it is deprecated in favor of calling that
824    /// explicitly. If you need to preserve the relative order of the keys in the map, use
825    /// [`.shift_remove(key)`][Self::shift_remove] instead.
826    #[deprecated(note = "`remove` disrupts the map order -- \
827        use `swap_remove` or `shift_remove` for explicit behavior.")]
828    pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
829    where
830        Q: ?Sized + Hash + Equivalent<K>,
831    {
832        self.swap_remove(key)
833    }
834
835    /// Remove and return the key-value pair equivalent to `key`.
836    ///
837    /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
838    /// replacing this entry's position with the last element, and it is deprecated in favor of
839    /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
840    /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
841    #[deprecated(note = "`remove_entry` disrupts the map order -- \
842        use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
843    pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
844    where
845        Q: ?Sized + Hash + Equivalent<K>,
846    {
847        self.swap_remove_entry(key)
848    }
849
850    /// Remove the key-value pair equivalent to `key` and return
851    /// its value.
852    ///
853    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
854    /// last element of the map and popping it off. **This perturbs
855    /// the position of what used to be the last element!**
856    ///
857    /// Return `None` if `key` is not in map.
858    ///
859    /// Computes in **O(1)** time (average).
860    pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
861    where
862        Q: ?Sized + Hash + Equivalent<K>,
863    {
864        self.swap_remove_full(key).map(third)
865    }
866
867    /// Remove and return the key-value pair equivalent to `key`.
868    ///
869    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
870    /// last element of the map and popping it off. **This perturbs
871    /// the position of what used to be the last element!**
872    ///
873    /// Return `None` if `key` is not in map.
874    ///
875    /// Computes in **O(1)** time (average).
876    pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
877    where
878        Q: ?Sized + Hash + Equivalent<K>,
879    {
880        match self.swap_remove_full(key) {
881            Some((_, key, value)) => Some((key, value)),
882            None => None,
883        }
884    }
885
886    /// Remove the key-value pair equivalent to `key` and return it and
887    /// the index it had.
888    ///
889    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
890    /// last element of the map and popping it off. **This perturbs
891    /// the position of what used to be the last element!**
892    ///
893    /// Return `None` if `key` is not in map.
894    ///
895    /// Computes in **O(1)** time (average).
896    pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
897    where
898        Q: ?Sized + Hash + Equivalent<K>,
899    {
900        match self.as_entries() {
901            [x] if key.equivalent(&x.key) => {
902                let (k, v) = self.core.pop()?;
903                Some((0, k, v))
904            }
905            [_] | [] => None,
906            _ => {
907                let hash = self.hash(key);
908                self.core.swap_remove_full(hash, key)
909            }
910        }
911    }
912
913    /// Remove the key-value pair equivalent to `key` and return
914    /// its value.
915    ///
916    /// Like [`Vec::remove`], the pair is removed by shifting all of the
917    /// elements that follow it, preserving their relative order.
918    /// **This perturbs the index of all of those elements!**
919    ///
920    /// Return `None` if `key` is not in map.
921    ///
922    /// Computes in **O(n)** time (average).
923    pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
924    where
925        Q: ?Sized + Hash + Equivalent<K>,
926    {
927        self.shift_remove_full(key).map(third)
928    }
929
930    /// Remove and return the key-value pair equivalent to `key`.
931    ///
932    /// Like [`Vec::remove`], the pair is removed by shifting all of the
933    /// elements that follow it, preserving their relative order.
934    /// **This perturbs the index of all of those elements!**
935    ///
936    /// Return `None` if `key` is not in map.
937    ///
938    /// Computes in **O(n)** time (average).
939    pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
940    where
941        Q: ?Sized + Hash + Equivalent<K>,
942    {
943        match self.shift_remove_full(key) {
944            Some((_, key, value)) => Some((key, value)),
945            None => None,
946        }
947    }
948
949    /// Remove the key-value pair equivalent to `key` and return it and
950    /// the index it had.
951    ///
952    /// Like [`Vec::remove`], the pair is removed by shifting all of the
953    /// elements that follow it, preserving their relative order.
954    /// **This perturbs the index of all of those elements!**
955    ///
956    /// Return `None` if `key` is not in map.
957    ///
958    /// Computes in **O(n)** time (average).
959    pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
960    where
961        Q: ?Sized + Hash + Equivalent<K>,
962    {
963        match self.as_entries() {
964            [x] if key.equivalent(&x.key) => {
965                let (k, v) = self.core.pop()?;
966                Some((0, k, v))
967            }
968            [_] | [] => None,
969            _ => {
970                let hash = self.hash(key);
971                self.core.shift_remove_full(hash, key)
972            }
973        }
974    }
975}
976
977impl<K, V, S> IndexMap<K, V, S> {
978    /// Remove the last key-value pair
979    ///
980    /// This preserves the order of the remaining elements.
981    ///
982    /// Computes in **O(1)** time (average).
983    #[doc(alias = "pop_last")] // like `BTreeMap`
984    pub fn pop(&mut self) -> Option<(K, V)> {
985        self.core.pop()
986    }
987
988    /// Scan through each key-value pair in the map and keep those where the
989    /// closure `keep` returns `true`.
990    ///
991    /// The elements are visited in order, and remaining elements keep their
992    /// order.
993    ///
994    /// Computes in **O(n)** time (average).
995    pub fn retain<F>(&mut self, mut keep: F)
996    where
997        F: FnMut(&K, &mut V) -> bool,
998    {
999        self.core.retain_in_order(move |k, v| keep(k, v));
1000    }
1001
1002    /// Sort the map’s key-value pairs by the default ordering of the keys.
1003    ///
1004    /// This is a stable sort -- but equivalent keys should not normally coexist in
1005    /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1006    /// because it is generally faster and doesn't allocate auxiliary memory.
1007    ///
1008    /// See [`sort_by`](Self::sort_by) for details.
1009    pub fn sort_keys(&mut self)
1010    where
1011        K: Ord,
1012    {
1013        self.with_entries(move |entries| {
1014            entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1015        });
1016    }
1017
1018    /// Sort the map’s key-value pairs in place using the comparison
1019    /// function `cmp`.
1020    ///
1021    /// The comparison function receives two key and value pairs to compare (you
1022    /// can sort by keys or values or their combination as needed).
1023    ///
1024    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1025    /// the length of the map and *c* the capacity. The sort is stable.
1026    pub fn sort_by<F>(&mut self, mut cmp: F)
1027    where
1028        F: FnMut(&K, &V, &K, &V) -> Ordering,
1029    {
1030        self.with_entries(move |entries| {
1031            entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1032        });
1033    }
1034
1035    /// Sort the key-value pairs of the map and return a by-value iterator of
1036    /// the key-value pairs with the result.
1037    ///
1038    /// The sort is stable.
1039    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1040    where
1041        F: FnMut(&K, &V, &K, &V) -> Ordering,
1042    {
1043        let mut entries = self.into_entries();
1044        entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1045        IntoIter::new(entries)
1046    }
1047
1048    /// Sort the map's key-value pairs by the default ordering of the keys, but
1049    /// may not preserve the order of equal elements.
1050    ///
1051    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1052    pub fn sort_unstable_keys(&mut self)
1053    where
1054        K: Ord,
1055    {
1056        self.with_entries(move |entries| {
1057            entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1058        });
1059    }
1060
1061    /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1062    /// may not preserve the order of equal elements.
1063    ///
1064    /// The comparison function receives two key and value pairs to compare (you
1065    /// can sort by keys or values or their combination as needed).
1066    ///
1067    /// Computes in **O(n log n + c)** time where *n* is
1068    /// the length of the map and *c* is the capacity. The sort is unstable.
1069    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1070    where
1071        F: FnMut(&K, &V, &K, &V) -> Ordering,
1072    {
1073        self.with_entries(move |entries| {
1074            entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1075        });
1076    }
1077
1078    /// Sort the key-value pairs of the map and return a by-value iterator of
1079    /// the key-value pairs with the result.
1080    ///
1081    /// The sort is unstable.
1082    #[inline]
1083    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1084    where
1085        F: FnMut(&K, &V, &K, &V) -> Ordering,
1086    {
1087        let mut entries = self.into_entries();
1088        entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1089        IntoIter::new(entries)
1090    }
1091
1092    /// Sort the map’s key-value pairs in place using a sort-key extraction function.
1093    ///
1094    /// During sorting, the function is called at most once per entry, by using temporary storage
1095    /// to remember the results of its evaluation. The order of calls to the function is
1096    /// unspecified and may change between versions of `indexmap` or the standard library.
1097    ///
1098    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1099    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1100    pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1101    where
1102        T: Ord,
1103        F: FnMut(&K, &V) -> T,
1104    {
1105        self.with_entries(move |entries| {
1106            entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1107        });
1108    }
1109
1110    /// Search over a sorted map for a key.
1111    ///
1112    /// Returns the position where that key is present, or the position where it can be inserted to
1113    /// maintain the sort. See [`slice::binary_search`] for more details.
1114    ///
1115    /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1116    /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1117    pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1118    where
1119        K: Ord,
1120    {
1121        self.as_slice().binary_search_keys(x)
1122    }
1123
1124    /// Search over a sorted map with a comparator function.
1125    ///
1126    /// Returns the position where that value is present, or the position where it can be inserted
1127    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1128    ///
1129    /// Computes in **O(log(n))** time.
1130    #[inline]
1131    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1132    where
1133        F: FnMut(&'a K, &'a V) -> Ordering,
1134    {
1135        self.as_slice().binary_search_by(f)
1136    }
1137
1138    /// Search over a sorted map with an extraction function.
1139    ///
1140    /// Returns the position where that value is present, or the position where it can be inserted
1141    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1142    ///
1143    /// Computes in **O(log(n))** time.
1144    #[inline]
1145    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1146    where
1147        F: FnMut(&'a K, &'a V) -> B,
1148        B: Ord,
1149    {
1150        self.as_slice().binary_search_by_key(b, f)
1151    }
1152
1153    /// Returns the index of the partition point of a sorted map according to the given predicate
1154    /// (the index of the first element of the second partition).
1155    ///
1156    /// See [`slice::partition_point`] for more details.
1157    ///
1158    /// Computes in **O(log(n))** time.
1159    #[must_use]
1160    pub fn partition_point<P>(&self, pred: P) -> usize
1161    where
1162        P: FnMut(&K, &V) -> bool,
1163    {
1164        self.as_slice().partition_point(pred)
1165    }
1166
1167    /// Reverses the order of the map’s key-value pairs in place.
1168    ///
1169    /// Computes in **O(n)** time and **O(1)** space.
1170    pub fn reverse(&mut self) {
1171        self.core.reverse()
1172    }
1173
1174    /// Returns a slice of all the key-value pairs in the map.
1175    ///
1176    /// Computes in **O(1)** time.
1177    pub fn as_slice(&self) -> &Slice<K, V> {
1178        Slice::from_slice(self.as_entries())
1179    }
1180
1181    /// Returns a mutable slice of all the key-value pairs in the map.
1182    ///
1183    /// Computes in **O(1)** time.
1184    pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1185        Slice::from_mut_slice(self.as_entries_mut())
1186    }
1187
1188    /// Converts into a boxed slice of all the key-value pairs in the map.
1189    ///
1190    /// Note that this will drop the inner hash table and any excess capacity.
1191    pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1192        Slice::from_boxed(self.into_entries().into_boxed_slice())
1193    }
1194
1195    /// Get a key-value pair by index
1196    ///
1197    /// Valid indices are `0 <= index < self.len()`.
1198    ///
1199    /// Computes in **O(1)** time.
1200    pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1201        self.as_entries().get(index).map(Bucket::refs)
1202    }
1203
1204    /// Get a key-value pair by index
1205    ///
1206    /// Valid indices are `0 <= index < self.len()`.
1207    ///
1208    /// Computes in **O(1)** time.
1209    pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1210        self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1211    }
1212
1213    /// Get an entry in the map by index for in-place manipulation.
1214    ///
1215    /// Valid indices are `0 <= index < self.len()`.
1216    ///
1217    /// Computes in **O(1)** time.
1218    pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1219        if index >= self.len() {
1220            return None;
1221        }
1222        Some(IndexedEntry::new(&mut self.core, index))
1223    }
1224
1225    /// Get an array of `N` key-value pairs by `N` indices
1226    ///
1227    /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1228    ///
1229    /// # Examples
1230    ///
1231    /// ```
1232    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1233    /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1234    /// ```
1235    pub fn get_disjoint_indices_mut<const N: usize>(
1236        &mut self,
1237        indices: [usize; N],
1238    ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1239        self.as_mut_slice().get_disjoint_mut(indices)
1240    }
1241
1242    /// Returns a slice of key-value pairs in the given range of indices.
1243    ///
1244    /// Valid indices are `0 <= index < self.len()`.
1245    ///
1246    /// Computes in **O(1)** time.
1247    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1248        let entries = self.as_entries();
1249        let range = try_simplify_range(range, entries.len())?;
1250        entries.get(range).map(Slice::from_slice)
1251    }
1252
1253    /// Returns a mutable slice of key-value pairs in the given range of indices.
1254    ///
1255    /// Valid indices are `0 <= index < self.len()`.
1256    ///
1257    /// Computes in **O(1)** time.
1258    pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1259        let entries = self.as_entries_mut();
1260        let range = try_simplify_range(range, entries.len())?;
1261        entries.get_mut(range).map(Slice::from_mut_slice)
1262    }
1263
1264    /// Get the first key-value pair
1265    ///
1266    /// Computes in **O(1)** time.
1267    #[doc(alias = "first_key_value")] // like `BTreeMap`
1268    pub fn first(&self) -> Option<(&K, &V)> {
1269        self.as_entries().first().map(Bucket::refs)
1270    }
1271
1272    /// Get the first key-value pair, with mutable access to the value
1273    ///
1274    /// Computes in **O(1)** time.
1275    pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1276        self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1277    }
1278
1279    /// Get the first entry in the map for in-place manipulation.
1280    ///
1281    /// Computes in **O(1)** time.
1282    pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1283        self.get_index_entry(0)
1284    }
1285
1286    /// Get the last key-value pair
1287    ///
1288    /// Computes in **O(1)** time.
1289    #[doc(alias = "last_key_value")] // like `BTreeMap`
1290    pub fn last(&self) -> Option<(&K, &V)> {
1291        self.as_entries().last().map(Bucket::refs)
1292    }
1293
1294    /// Get the last key-value pair, with mutable access to the value
1295    ///
1296    /// Computes in **O(1)** time.
1297    pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1298        self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1299    }
1300
1301    /// Get the last entry in the map for in-place manipulation.
1302    ///
1303    /// Computes in **O(1)** time.
1304    pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1305        self.get_index_entry(self.len().checked_sub(1)?)
1306    }
1307
1308    /// Remove the key-value pair by index
1309    ///
1310    /// Valid indices are `0 <= index < self.len()`.
1311    ///
1312    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1313    /// last element of the map and popping it off. **This perturbs
1314    /// the position of what used to be the last element!**
1315    ///
1316    /// Computes in **O(1)** time (average).
1317    pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1318        self.core.swap_remove_index(index)
1319    }
1320
1321    /// Remove the key-value pair by index
1322    ///
1323    /// Valid indices are `0 <= index < self.len()`.
1324    ///
1325    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1326    /// elements that follow it, preserving their relative order.
1327    /// **This perturbs the index of all of those elements!**
1328    ///
1329    /// Computes in **O(n)** time (average).
1330    pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1331        self.core.shift_remove_index(index)
1332    }
1333
1334    /// Moves the position of a key-value pair from one index to another
1335    /// by shifting all other pairs in-between.
1336    ///
1337    /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1338    /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1339    ///
1340    /// ***Panics*** if `from` or `to` are out of bounds.
1341    ///
1342    /// Computes in **O(n)** time (average).
1343    #[track_caller]
1344    pub fn move_index(&mut self, from: usize, to: usize) {
1345        self.core.move_index(from, to)
1346    }
1347
1348    /// Swaps the position of two key-value pairs in the map.
1349    ///
1350    /// ***Panics*** if `a` or `b` are out of bounds.
1351    ///
1352    /// Computes in **O(1)** time (average).
1353    #[track_caller]
1354    pub fn swap_indices(&mut self, a: usize, b: usize) {
1355        self.core.swap_indices(a, b)
1356    }
1357}
1358
1359/// Access [`IndexMap`] values corresponding to a key.
1360///
1361/// # Examples
1362///
1363/// ```
1364/// use indexmap::IndexMap;
1365///
1366/// let mut map = IndexMap::new();
1367/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1368///     map.insert(word.to_lowercase(), word.to_uppercase());
1369/// }
1370/// assert_eq!(map["lorem"], "LOREM");
1371/// assert_eq!(map["ipsum"], "IPSUM");
1372/// ```
1373///
1374/// ```should_panic
1375/// use indexmap::IndexMap;
1376///
1377/// let mut map = IndexMap::new();
1378/// map.insert("foo", 1);
1379/// println!("{:?}", map["bar"]); // panics!
1380/// ```
1381impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1382where
1383    Q: Hash + Equivalent<K>,
1384    S: BuildHasher,
1385{
1386    type Output = V;
1387
1388    /// Returns a reference to the value corresponding to the supplied `key`.
1389    ///
1390    /// ***Panics*** if `key` is not present in the map.
1391    fn index(&self, key: &Q) -> &V {
1392        self.get(key).expect("no entry found for key")
1393    }
1394}
1395
1396/// Access [`IndexMap`] values corresponding to a key.
1397///
1398/// Mutable indexing allows changing / updating values of key-value
1399/// pairs that are already present.
1400///
1401/// You can **not** insert new pairs with index syntax, use `.insert()`.
1402///
1403/// # Examples
1404///
1405/// ```
1406/// use indexmap::IndexMap;
1407///
1408/// let mut map = IndexMap::new();
1409/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1410///     map.insert(word.to_lowercase(), word.to_string());
1411/// }
1412/// let lorem = &mut map["lorem"];
1413/// assert_eq!(lorem, "Lorem");
1414/// lorem.retain(char::is_lowercase);
1415/// assert_eq!(map["lorem"], "orem");
1416/// ```
1417///
1418/// ```should_panic
1419/// use indexmap::IndexMap;
1420///
1421/// let mut map = IndexMap::new();
1422/// map.insert("foo", 1);
1423/// map["bar"] = 1; // panics!
1424/// ```
1425impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1426where
1427    Q: Hash + Equivalent<K>,
1428    S: BuildHasher,
1429{
1430    /// Returns a mutable reference to the value corresponding to the supplied `key`.
1431    ///
1432    /// ***Panics*** if `key` is not present in the map.
1433    fn index_mut(&mut self, key: &Q) -> &mut V {
1434        self.get_mut(key).expect("no entry found for key")
1435    }
1436}
1437
1438/// Access [`IndexMap`] values at indexed positions.
1439///
1440/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1441///
1442/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1443///
1444/// # Examples
1445///
1446/// ```
1447/// use indexmap::IndexMap;
1448///
1449/// let mut map = IndexMap::new();
1450/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1451///     map.insert(word.to_lowercase(), word.to_uppercase());
1452/// }
1453/// assert_eq!(map[0], "LOREM");
1454/// assert_eq!(map[1], "IPSUM");
1455/// map.reverse();
1456/// assert_eq!(map[0], "AMET");
1457/// assert_eq!(map[1], "SIT");
1458/// map.sort_keys();
1459/// assert_eq!(map[0], "AMET");
1460/// assert_eq!(map[1], "DOLOR");
1461/// ```
1462///
1463/// ```should_panic
1464/// use indexmap::IndexMap;
1465///
1466/// let mut map = IndexMap::new();
1467/// map.insert("foo", 1);
1468/// println!("{:?}", map[10]); // panics!
1469/// ```
1470impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1471    type Output = V;
1472
1473    /// Returns a reference to the value at the supplied `index`.
1474    ///
1475    /// ***Panics*** if `index` is out of bounds.
1476    fn index(&self, index: usize) -> &V {
1477        self.get_index(index)
1478            .unwrap_or_else(|| {
1479                panic!(
1480                    "index out of bounds: the len is {len} but the index is {index}",
1481                    len = self.len()
1482                );
1483            })
1484            .1
1485    }
1486}
1487
1488/// Access [`IndexMap`] values at indexed positions.
1489///
1490/// Mutable indexing allows changing / updating indexed values
1491/// that are already present.
1492///
1493/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1494///
1495/// # Examples
1496///
1497/// ```
1498/// use indexmap::IndexMap;
1499///
1500/// let mut map = IndexMap::new();
1501/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1502///     map.insert(word.to_lowercase(), word.to_string());
1503/// }
1504/// let lorem = &mut map[0];
1505/// assert_eq!(lorem, "Lorem");
1506/// lorem.retain(char::is_lowercase);
1507/// assert_eq!(map["lorem"], "orem");
1508/// ```
1509///
1510/// ```should_panic
1511/// use indexmap::IndexMap;
1512///
1513/// let mut map = IndexMap::new();
1514/// map.insert("foo", 1);
1515/// map[10] = 1; // panics!
1516/// ```
1517impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1518    /// Returns a mutable reference to the value at the supplied `index`.
1519    ///
1520    /// ***Panics*** if `index` is out of bounds.
1521    fn index_mut(&mut self, index: usize) -> &mut V {
1522        let len: usize = self.len();
1523
1524        self.get_index_mut(index)
1525            .unwrap_or_else(|| {
1526                panic!("index out of bounds: the len is {len} but the index is {index}");
1527            })
1528            .1
1529    }
1530}
1531
1532impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1533where
1534    K: Hash + Eq,
1535    S: BuildHasher + Default,
1536{
1537    /// Create an `IndexMap` from the sequence of key-value pairs in the
1538    /// iterable.
1539    ///
1540    /// `from_iter` uses the same logic as `extend`. See
1541    /// [`extend`][IndexMap::extend] for more details.
1542    fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1543        let iter = iterable.into_iter();
1544        let (low, _) = iter.size_hint();
1545        let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1546        map.extend(iter);
1547        map
1548    }
1549}
1550
1551#[cfg(feature = "std")]
1552#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1553impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1554where
1555    K: Hash + Eq,
1556{
1557    /// # Examples
1558    ///
1559    /// ```
1560    /// use indexmap::IndexMap;
1561    ///
1562    /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1563    /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1564    /// assert_eq!(map1, map2);
1565    /// ```
1566    fn from(arr: [(K, V); N]) -> Self {
1567        Self::from_iter(arr)
1568    }
1569}
1570
1571impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1572where
1573    K: Hash + Eq,
1574    S: BuildHasher,
1575{
1576    /// Extend the map with all key-value pairs in the iterable.
1577    ///
1578    /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1579    /// them in order, which means that for keys that already existed
1580    /// in the map, their value is updated but it keeps the existing order.
1581    ///
1582    /// New keys are inserted in the order they appear in the sequence. If
1583    /// equivalents of a key occur more than once, the last corresponding value
1584    /// prevails.
1585    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1586        // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1587        // Keys may be already present or show multiple times in the iterator.
1588        // Reserve the entire hint lower bound if the map is empty.
1589        // Otherwise reserve half the hint (rounded up), so the map
1590        // will only resize twice in the worst case.
1591        let iter = iterable.into_iter();
1592        let reserve = if self.is_empty() {
1593            iter.size_hint().0
1594        } else {
1595            (iter.size_hint().0 + 1) / 2
1596        };
1597        self.reserve(reserve);
1598        iter.for_each(move |(k, v)| {
1599            self.insert(k, v);
1600        });
1601    }
1602}
1603
1604impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1605where
1606    K: Hash + Eq + Copy,
1607    V: Copy,
1608    S: BuildHasher,
1609{
1610    /// Extend the map with all key-value pairs in the iterable.
1611    ///
1612    /// See the first extend method for more details.
1613    fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1614        self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1615    }
1616}
1617
1618impl<K, V, S> Default for IndexMap<K, V, S>
1619where
1620    S: Default,
1621{
1622    /// Return an empty [`IndexMap`]
1623    fn default() -> Self {
1624        Self::with_capacity_and_hasher(0, S::default())
1625    }
1626}
1627
1628impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1629where
1630    K: Hash + Eq,
1631    V1: PartialEq<V2>,
1632    S1: BuildHasher,
1633    S2: BuildHasher,
1634{
1635    fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1636        if self.len() != other.len() {
1637            return false;
1638        }
1639
1640        self.iter()
1641            .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1642    }
1643}
1644
1645impl<K, V, S> Eq for IndexMap<K, V, S>
1646where
1647    K: Eq + Hash,
1648    V: Eq,
1649    S: BuildHasher,
1650{
1651}