zerovec/flexzerovec/
slice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use super::FlexZeroVec;
use crate::ZeroVecError;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::mem;
use core::ops::Range;

const USIZE_WIDTH: usize = mem::size_of::<usize>();

/// A zero-copy "slice" that efficiently represents `[usize]`.
#[repr(C, packed)]
pub struct FlexZeroSlice {
    // Hard Invariant: 1 <= width <= USIZE_WIDTH (which is target_pointer_width)
    // Soft Invariant: width == the width of the largest element
    width: u8,
    // Hard Invariant: data.len() % width == 0
    data: [u8],
}

impl fmt::Debug for FlexZeroSlice {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.to_vec().fmt(f)
    }
}

impl PartialEq for FlexZeroSlice {
    fn eq(&self, other: &Self) -> bool {
        self.width == other.width && self.data == other.data
    }
}
impl Eq for FlexZeroSlice {}

/// Helper function to decode a little-endian "chunk" (byte slice of a specific length)
/// into a `usize`. We cannot call `usize::from_le_bytes` directly because that function
/// requires the high bits to be set to 0.
#[inline]
pub(crate) fn chunk_to_usize(chunk: &[u8], width: usize) -> usize {
    debug_assert_eq!(chunk.len(), width);
    let mut bytes = [0; USIZE_WIDTH];
    #[allow(clippy::indexing_slicing)] // protected by debug_assert above
    bytes[0..width].copy_from_slice(chunk);
    usize::from_le_bytes(bytes)
}

impl FlexZeroSlice {
    /// Constructs a new empty [`FlexZeroSlice`].
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroSlice;
    ///
    /// const EMPTY_SLICE: &FlexZeroSlice = FlexZeroSlice::new_empty();
    ///
    /// assert!(EMPTY_SLICE.is_empty());
    /// assert_eq!(EMPTY_SLICE.len(), 0);
    /// assert_eq!(EMPTY_SLICE.first(), None);
    /// ```
    #[inline]
    pub const fn new_empty() -> &'static Self {
        const ARR: &[u8] = &[1u8];
        // Safety: The slice is a valid empty `FlexZeroSlice`
        unsafe { Self::from_byte_slice_unchecked(ARR) }
    }

    /// Safely constructs a [`FlexZeroSlice`] from a byte array.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroSlice;
    ///
    /// const FZS: &FlexZeroSlice = match FlexZeroSlice::parse_byte_slice(&[
    ///     2, // width
    ///     0x42, 0x00, // first value
    ///     0x07, 0x09, // second value
    ///     0xFF, 0xFF, // third value
    /// ]) {
    ///     Ok(v) => v,
    ///     Err(_) => panic!("invalid bytes"),
    /// };
    ///
    /// assert!(!FZS.is_empty());
    /// assert_eq!(FZS.len(), 3);
    /// assert_eq!(FZS.first(), Some(0x0042));
    /// assert_eq!(FZS.get(0), Some(0x0042));
    /// assert_eq!(FZS.get(1), Some(0x0907));
    /// assert_eq!(FZS.get(2), Some(0xFFFF));
    /// assert_eq!(FZS.get(3), None);
    /// assert_eq!(FZS.last(), Some(0xFFFF));
    /// ```
    pub const fn parse_byte_slice(bytes: &[u8]) -> Result<&Self, ZeroVecError> {
        let (width_u8, data) = match bytes.split_first() {
            Some(v) => v,
            None => {
                return Err(ZeroVecError::InvalidLength {
                    ty: "FlexZeroSlice",
                    len: 0,
                })
            }
        };
        let width = *width_u8 as usize;
        if width < 1 || width > USIZE_WIDTH {
            return Err(ZeroVecError::ParseError {
                ty: "FlexZeroSlice",
            });
        }
        if data.len() % width != 0 {
            return Err(ZeroVecError::InvalidLength {
                ty: "FlexZeroSlice",
                len: bytes.len(),
            });
        }
        // Safety: All hard invariants have been checked.
        // Note: The soft invariant requires a linear search that we don't do here.
        Ok(unsafe { Self::from_byte_slice_unchecked(bytes) })
    }

    /// Constructs a [`FlexZeroSlice`] without checking invariants.
    ///
    /// # Panics
    ///
    /// Panics if `bytes` is empty.
    ///
    /// # Safety
    ///
    /// Must be called on a valid [`FlexZeroSlice`] byte array.
    #[inline]
    pub const unsafe fn from_byte_slice_unchecked(bytes: &[u8]) -> &Self {
        // Safety: The DST of FlexZeroSlice is a pointer to the `width` element and has a metadata
        // equal to the length of the `data` field, which will be one less than the length of the
        // overall array.
        #[allow(clippy::panic)] // panic is documented in function contract
        if bytes.is_empty() {
            panic!("from_byte_slice_unchecked called with empty slice")
        }
        let slice = core::ptr::slice_from_raw_parts(bytes.as_ptr(), bytes.len() - 1);
        &*(slice as *const Self)
    }

    #[inline]
    pub(crate) unsafe fn from_byte_slice_mut_unchecked(bytes: &mut [u8]) -> &mut Self {
        // Safety: See comments in `from_byte_slice_unchecked`
        let remainder = core::ptr::slice_from_raw_parts_mut(bytes.as_mut_ptr(), bytes.len() - 1);
        &mut *(remainder as *mut Self)
    }

    /// Returns this slice as its underlying `&[u8]` byte buffer representation.
    ///
    /// Useful for serialization.
    ///
    /// # Example
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroSlice;
    ///
    /// let bytes: &[u8] = &[2, 0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x80];
    /// let fzv = FlexZeroSlice::parse_byte_slice(bytes).expect("valid bytes");
    ///
    /// assert_eq!(bytes, fzv.as_bytes());
    /// ```
    #[inline]
    pub fn as_bytes(&self) -> &[u8] {
        // Safety: See comments in `from_byte_slice_unchecked`
        unsafe {
            core::slice::from_raw_parts(self as *const Self as *const u8, self.data.len() + 1)
        }
    }

    /// Borrows this `FlexZeroSlice` as a [`FlexZeroVec::Borrowed`].
    #[inline]
    pub const fn as_flexzerovec(&self) -> FlexZeroVec {
        FlexZeroVec::Borrowed(self)
    }

    /// Returns the number of elements in the `FlexZeroSlice`.
    #[inline]
    pub fn len(&self) -> usize {
        self.data.len() / self.get_width()
    }

    #[inline]
    pub(crate) fn get_width(&self) -> usize {
        usize::from(self.width)
    }

    /// Returns whether there are zero elements in the `FlexZeroSlice`.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.data.len() == 0
    }

    /// Gets the element at `index`, or `None` if `index >= self.len()`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let fzv: FlexZeroVec = [22, 33].iter().copied().collect();
    /// assert_eq!(fzv.get(0), Some(22));
    /// assert_eq!(fzv.get(1), Some(33));
    /// assert_eq!(fzv.get(2), None);
    /// ```
    #[inline]
    pub fn get(&self, index: usize) -> Option<usize> {
        if index >= self.len() {
            None
        } else {
            Some(unsafe { self.get_unchecked(index) })
        }
    }

    /// Gets the element at `index` as a chunk of bytes, or `None` if `index >= self.len()`.
    #[inline]
    pub(crate) fn get_chunk(&self, index: usize) -> Option<&[u8]> {
        let w = self.get_width();
        self.data.get(index * w..index * w + w)
    }

    /// Gets the element at `index` without checking bounds.
    ///
    /// # Safety
    ///
    /// `index` must be in-range.
    #[inline]
    pub unsafe fn get_unchecked(&self, index: usize) -> usize {
        match self.width {
            1 => *self.data.get_unchecked(index) as usize,
            2 => {
                let ptr = self.data.as_ptr().add(index * 2);
                u16::from_le_bytes(core::ptr::read(ptr as *const [u8; 2])) as usize
            }
            _ => {
                let mut bytes = [0; USIZE_WIDTH];
                let w = self.get_width();
                assert!(w <= USIZE_WIDTH);
                let ptr = self.data.as_ptr().add(index * w);
                core::ptr::copy_nonoverlapping(ptr, bytes.as_mut_ptr(), w);
                usize::from_le_bytes(bytes)
            }
        }
    }

    /// Gets the first element of the slice, or `None` if the slice is empty.
    #[inline]
    pub fn first(&self) -> Option<usize> {
        let w = self.get_width();
        self.data.get(0..w).map(|chunk| chunk_to_usize(chunk, w))
    }

    /// Gets the last element of the slice, or `None` if the slice is empty.
    #[inline]
    pub fn last(&self) -> Option<usize> {
        let l = self.data.len();
        if l == 0 {
            None
        } else {
            let w = self.get_width();
            self.data
                .get(l - w..l)
                .map(|chunk| chunk_to_usize(chunk, w))
        }
    }

    /// Gets an iterator over the elements of the slice as `usize`.
    #[inline]
    pub fn iter(
        &self,
    ) -> impl DoubleEndedIterator<Item = usize> + '_ + ExactSizeIterator<Item = usize> {
        let w = self.get_width();
        self.data
            .chunks_exact(w)
            .map(move |chunk| chunk_to_usize(chunk, w))
    }

    /// Gets an iterator over pairs of elements.
    ///
    /// The second element of the final pair is `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let nums: &[usize] = &[211, 281, 421, 461];
    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
    ///
    /// let mut pairs_it = fzv.iter_pairs();
    ///
    /// assert_eq!(pairs_it.next(), Some((211, Some(281))));
    /// assert_eq!(pairs_it.next(), Some((281, Some(421))));
    /// assert_eq!(pairs_it.next(), Some((421, Some(461))));
    /// assert_eq!(pairs_it.next(), Some((461, None)));
    /// assert_eq!(pairs_it.next(), None);
    /// ```
    pub fn iter_pairs(&self) -> impl Iterator<Item = (usize, Option<usize>)> + '_ {
        self.iter().zip(self.iter().skip(1).map(Some).chain([None]))
    }

    /// Creates a `Vec<usize>` from a [`FlexZeroSlice`] (or `FlexZeroVec`).
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let nums: &[usize] = &[211, 281, 421, 461];
    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
    /// let vec: Vec<usize> = fzv.to_vec();
    ///
    /// assert_eq!(nums, vec.as_slice());
    /// ```
    #[inline]
    pub fn to_vec(&self) -> Vec<usize> {
        self.iter().collect()
    }

    /// Binary searches a sorted `FlexZeroSlice` for the given `usize` value.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// let nums: &[usize] = &[211, 281, 421, 461];
    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
    ///
    /// assert_eq!(fzv.binary_search(0), Err(0));
    /// assert_eq!(fzv.binary_search(211), Ok(0));
    /// assert_eq!(fzv.binary_search(250), Err(1));
    /// assert_eq!(fzv.binary_search(281), Ok(1));
    /// assert_eq!(fzv.binary_search(300), Err(2));
    /// assert_eq!(fzv.binary_search(421), Ok(2));
    /// assert_eq!(fzv.binary_search(450), Err(3));
    /// assert_eq!(fzv.binary_search(461), Ok(3));
    /// assert_eq!(fzv.binary_search(462), Err(4));
    /// ```
    #[inline]
    pub fn binary_search(&self, needle: usize) -> Result<usize, usize> {
        self.binary_search_by(|probe| probe.cmp(&needle))
    }

    /// Binary searches a sorted range of a `FlexZeroSlice` for the given `usize` value.
    ///
    /// The indices in the return value are relative to the start of the range.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerovec::vecs::FlexZeroVec;
    ///
    /// // Make a FlexZeroVec with two sorted ranges: 0..3 and 3..5
    /// let nums: &[usize] = &[111, 222, 444, 333, 555];
    /// let fzv: FlexZeroVec = nums.iter().copied().collect();
    ///
    /// // Search in the first range:
    /// assert_eq!(fzv.binary_search_in_range(0, 0..3), Some(Err(0)));
    /// assert_eq!(fzv.binary_search_in_range(111, 0..3), Some(Ok(0)));
    /// assert_eq!(fzv.binary_search_in_range(199, 0..3), Some(Err(1)));
    /// assert_eq!(fzv.binary_search_in_range(222, 0..3), Some(Ok(1)));
    /// assert_eq!(fzv.binary_search_in_range(399, 0..3), Some(Err(2)));
    /// assert_eq!(fzv.binary_search_in_range(444, 0..3), Some(Ok(2)));
    /// assert_eq!(fzv.binary_search_in_range(999, 0..3), Some(Err(3)));
    ///
    /// // Search in the second range:
    /// assert_eq!(fzv.binary_search_in_range(0, 3..5), Some(Err(0)));
    /// assert_eq!(fzv.binary_search_in_range(333, 3..5), Some(Ok(0)));
    /// assert_eq!(fzv.binary_search_in_range(399, 3..5), Some(Err(1)));
    /// assert_eq!(fzv.binary_search_in_range(555, 3..5), Some(Ok(1)));
    /// assert_eq!(fzv.binary_search_in_range(999, 3..5), Some(Err(2)));
    ///
    /// // Out-of-bounds range:
    /// assert_eq!(fzv.binary_search_in_range(0, 4..6), None);
    /// ```
    #[inline]
    pub fn binary_search_in_range(
        &self,
        needle: usize,
        range: Range<usize>,
    ) -> Option<Result<usize, usize>> {
        self.binary_search_in_range_by(|probe| probe.cmp(&needle), range)
    }

    /// Binary searches a sorted `FlexZeroSlice` according to a predicate function.
    #[inline]
    pub fn binary_search_by(
        &self,
        predicate: impl FnMut(usize) -> Ordering,
    ) -> Result<usize, usize> {
        debug_assert!(self.len() <= self.data.len());
        // Safety: self.len() <= self.data.len()
        let scaled_slice = unsafe { self.data.get_unchecked(0..self.len()) };
        self.binary_search_impl(predicate, scaled_slice)
    }

    /// Binary searches a sorted range of a `FlexZeroSlice` according to a predicate function.
    ///
    /// The indices in the return value are relative to the start of the range.
    #[inline]
    pub fn binary_search_in_range_by(
        &self,
        predicate: impl FnMut(usize) -> Ordering,
        range: Range<usize>,
    ) -> Option<Result<usize, usize>> {
        // Note: We need to check bounds separately, since `self.data.get(range)` does not return
        // bounds errors, since it is indexing directly into the upscaled data array
        if range.start > self.len() || range.end > self.len() {
            return None;
        }
        let scaled_slice = self.data.get(range)?;
        Some(self.binary_search_impl(predicate, scaled_slice))
    }

    /// Binary searches a `FlexZeroSlice` by its indices.
    ///
    /// The `predicate` function is passed in-bounds indices into the `FlexZeroSlice`.
    #[inline]
    pub fn binary_search_with_index(
        &self,
        predicate: impl FnMut(usize) -> Ordering,
    ) -> Result<usize, usize> {
        debug_assert!(self.len() <= self.data.len());
        // Safety: self.len() <= self.data.len()
        let scaled_slice = unsafe { self.data.get_unchecked(0..self.len()) };
        self.binary_search_with_index_impl(predicate, scaled_slice)
    }

    /// Binary searches a range of a `FlexZeroSlice` by its indices.
    ///
    /// The `predicate` function is passed in-bounds indices into the `FlexZeroSlice`, which are
    /// relative to the start of the entire slice.
    ///
    /// The indices in the return value are relative to the start of the range.
    #[inline]
    pub fn binary_search_in_range_with_index(
        &self,
        predicate: impl FnMut(usize) -> Ordering,
        range: Range<usize>,
    ) -> Option<Result<usize, usize>> {
        // Note: We need to check bounds separately, since `self.data.get(range)` does not return
        // bounds errors, since it is indexing directly into the upscaled data array
        if range.start > self.len() || range.end > self.len() {
            return None;
        }
        let scaled_slice = self.data.get(range)?;
        Some(self.binary_search_with_index_impl(predicate, scaled_slice))
    }

    /// # Safety
    ///
    /// `scaled_slice` must be a subslice of `self.data`
    #[inline]
    fn binary_search_impl(
        &self,
        mut predicate: impl FnMut(usize) -> Ordering,
        scaled_slice: &[u8],
    ) -> Result<usize, usize> {
        self.binary_search_with_index_impl(
            |index| {
                // Safety: The contract of `binary_search_with_index_impl` says `index` is in bounds
                let actual_probe = unsafe { self.get_unchecked(index) };
                predicate(actual_probe)
            },
            scaled_slice,
        )
    }

    /// `predicate` is passed a valid index as an argument.
    ///
    /// # Safety
    ///
    /// `scaled_slice` must be a subslice of `self.data`
    fn binary_search_with_index_impl(
        &self,
        mut predicate: impl FnMut(usize) -> Ordering,
        scaled_slice: &[u8],
    ) -> Result<usize, usize> {
        // This code is an absolute atrocity. This code is not a place of honor. This
        // code is known to the State of California to cause cancer.
        //
        // Unfortunately, the stdlib's `binary_search*` functions can only operate on slices.
        // We do not have a slice. We have something we can .get() and index on, but that is not
        // a slice.
        //
        // The `binary_search*` functions also do not have a variant where they give you the element's
        // index, which we could otherwise use to directly index `self`.
        // We do have `self.indices`, but these are indices into a byte buffer, which cannot in
        // isolation be used to recoup the logical index of the element they refer to.
        //
        // However, `binary_search_by()` provides references to the elements of the slice being iterated.
        // Since the layout of Rust slices is well-defined, we can do pointer arithmetic on these references
        // to obtain the index being used by the search.
        //
        // It's worth noting that the slice we choose to search is irrelevant, as long as it has the appropriate
        // length. `self.indices` is defined to have length `self.len()`, so it is convenient to use
        // here and does not require additional allocations.
        //
        // The alternative to doing this is to implement our own binary search. This is significantly less fun.

        // Note: We always use zero_index relative to the whole indices array, even if we are
        // only searching a subslice of it.
        let zero_index = self.data.as_ptr() as *const _ as usize;
        scaled_slice.binary_search_by(|probe: &_| {
            // Note: `scaled_slice` is a slice of u8
            let index = probe as *const _ as usize - zero_index;
            predicate(index)
        })
    }
}

#[inline]
pub(crate) fn get_item_width(item_bytes: &[u8; USIZE_WIDTH]) -> usize {
    USIZE_WIDTH - item_bytes.iter().rev().take_while(|b| **b == 0).count()
}

/// Pre-computed information about a pending insertion operation.
///
/// Do not create one of these directly; call `get_insert_info()`.
pub(crate) struct InsertInfo {
    /// The bytes to be inserted, with zero-fill.
    pub item_bytes: [u8; USIZE_WIDTH],
    /// The new item width after insertion.
    pub new_width: usize,
    /// The new number of items in the vector: self.len() after insertion.
    pub new_count: usize,
    /// The new number of bytes required for the entire slice (self.data.len() + 1).
    pub new_bytes_len: usize,
}

impl FlexZeroSlice {
    /// Compute the [`InsertInfo`] for inserting the specified item anywhere into the vector.
    ///
    /// # Panics
    ///
    /// Panics if inserting the element would require allocating more than `usize::MAX` bytes.
    pub(crate) fn get_insert_info(&self, new_item: usize) -> InsertInfo {
        let item_bytes = new_item.to_le_bytes();
        let item_width = get_item_width(&item_bytes);
        let old_width = self.get_width();
        let new_width = core::cmp::max(old_width, item_width);
        let new_count = 1 + (self.data.len() / old_width);
        #[allow(clippy::unwrap_used)] // panic is documented in function contract
        let new_bytes_len = new_count
            .checked_mul(new_width)
            .unwrap()
            .checked_add(1)
            .unwrap();
        InsertInfo {
            item_bytes,
            new_width,
            new_count,
            new_bytes_len,
        }
    }

    /// This function should be called on a slice with a data array `new_data_len` long
    /// which previously held `new_count - 1` elements.
    ///
    /// After calling this function, all bytes in the slice will have been written.
    pub(crate) fn insert_impl(&mut self, insert_info: InsertInfo, insert_index: usize) {
        let InsertInfo {
            item_bytes,
            new_width,
            new_count,
            new_bytes_len,
        } = insert_info;
        debug_assert!(new_width <= USIZE_WIDTH);
        debug_assert!(new_width >= self.get_width());
        debug_assert!(insert_index < new_count);
        debug_assert_eq!(new_bytes_len, new_count * new_width + 1);
        debug_assert_eq!(new_bytes_len, self.data.len() + 1);
        // For efficiency, calculate how many items we can skip copying.
        let lower_i = if new_width == self.get_width() {
            insert_index
        } else {
            0
        };
        // Copy elements starting from the end into the new empty section of the vector.
        // Note: We could copy fully in place, but we need to set 0 bytes for the high bytes,
        // so we stage the new value on the stack.
        for i in (lower_i..new_count).rev() {
            let bytes_to_write = if i == insert_index {
                item_bytes
            } else {
                let j = if i > insert_index { i - 1 } else { i };
                debug_assert!(j < new_count - 1);
                // Safety: j is in range (assertion on previous line), and it has not been
                // overwritten yet since we are walking backwards.
                unsafe { self.get_unchecked(j).to_le_bytes() }
            };
            // Safety: The vector has capacity for `new_width` items at the new index, which is
            // later in the array than the bytes that we read above.
            unsafe {
                core::ptr::copy_nonoverlapping(
                    bytes_to_write.as_ptr(),
                    self.data.as_mut_ptr().add(new_width * i),
                    new_width,
                );
            }
        }
        self.width = new_width as u8;
    }
}

/// Pre-computed information about a pending removal operation.
///
/// Do not create one of these directly; call `get_remove_info()` or `get_sorted_pop_info()`.
pub(crate) struct RemoveInfo {
    /// The index of the item to be removed.
    pub remove_index: usize,
    /// The new item width after insertion.
    pub new_width: usize,
    /// The new number of items in the vector: self.len() after insertion.
    pub new_count: usize,
    /// The new number of bytes required for the entire slice (self.data.len() + 1).
    pub new_bytes_len: usize,
}

impl FlexZeroSlice {
    /// Compute the [`RemoveInfo`] for removing the item at the specified index.
    pub(crate) fn get_remove_info(&self, remove_index: usize) -> RemoveInfo {
        debug_assert!(remove_index < self.len());
        // Safety: remove_index is in range (assertion on previous line)
        let item_bytes = unsafe { self.get_unchecked(remove_index).to_le_bytes() };
        let item_width = get_item_width(&item_bytes);
        let old_width = self.get_width();
        let old_count = self.data.len() / old_width;
        let new_width = if item_width < old_width {
            old_width
        } else {
            debug_assert_eq!(old_width, item_width);
            // We might be removing the widest element. If so, we need to scale down.
            let mut largest_width = 1;
            for i in 0..old_count {
                if i == remove_index {
                    continue;
                }
                // Safety: i is in range (between 0 and old_count)
                let curr_bytes = unsafe { self.get_unchecked(i).to_le_bytes() };
                let curr_width = get_item_width(&curr_bytes);
                largest_width = core::cmp::max(curr_width, largest_width);
            }
            largest_width
        };
        let new_count = old_count - 1;
        // Note: the following line won't overflow because we are making the slice shorter.
        let new_bytes_len = new_count * new_width + 1;
        RemoveInfo {
            remove_index,
            new_width,
            new_count,
            new_bytes_len,
        }
    }

    /// Returns the [`RemoveInfo`] for removing the last element. Should be called
    /// on a slice sorted in ascending order.
    ///
    /// This is more efficient than `get_remove_info()` because it doesn't require a
    /// linear traversal of the vector in order to calculate `new_width`.
    pub(crate) fn get_sorted_pop_info(&self) -> RemoveInfo {
        debug_assert!(!self.is_empty());
        let remove_index = self.len() - 1;
        let old_count = self.len();
        let new_width = if old_count == 1 {
            1
        } else {
            // Safety: the FlexZeroSlice has at least two elements
            let largest_item = unsafe { self.get_unchecked(remove_index - 1).to_le_bytes() };
            get_item_width(&largest_item)
        };
        let new_count = old_count - 1;
        // Note: the following line won't overflow because we are making the slice shorter.
        let new_bytes_len = new_count * new_width + 1;
        RemoveInfo {
            remove_index,
            new_width,
            new_count,
            new_bytes_len,
        }
    }

    /// This function should be called on a valid slice.
    ///
    /// After calling this function, the slice data should be truncated to `new_data_len` bytes.
    pub(crate) fn remove_impl(&mut self, remove_info: RemoveInfo) {
        let RemoveInfo {
            remove_index,
            new_width,
            new_count,
            ..
        } = remove_info;
        debug_assert!(new_width <= self.get_width());
        debug_assert!(new_count < self.len());
        // For efficiency, calculate how many items we can skip copying.
        let lower_i = if new_width == self.get_width() {
            remove_index
        } else {
            0
        };
        // Copy elements starting from the beginning to compress the vector to fewer bytes.
        for i in lower_i..new_count {
            let j = if i < remove_index { i } else { i + 1 };
            // Safety: j is in range because j <= new_count < self.len()
            let bytes_to_write = unsafe { self.get_unchecked(j).to_le_bytes() };
            // Safety: The bytes are being copied to a section of the array that is not after
            // the section of the array that currently holds the bytes.
            unsafe {
                core::ptr::copy_nonoverlapping(
                    bytes_to_write.as_ptr(),
                    self.data.as_mut_ptr().add(new_width * i),
                    new_width,
                );
            }
        }
        self.width = new_width as u8;
    }
}