bumpalo/
lib.rs

1#![doc = include_str!("../README.md")]
2#![deny(missing_debug_implementations)]
3#![deny(missing_docs)]
4#![cfg_attr(not(feature = "std"), no_std)]
5#![cfg_attr(feature = "allocator_api", feature(allocator_api))]
6
7#[doc(hidden)]
8pub extern crate alloc as core_alloc;
9
10#[cfg(feature = "boxed")]
11pub mod boxed;
12#[cfg(feature = "collections")]
13pub mod collections;
14
15mod alloc;
16
17use core::cell::Cell;
18use core::cmp::Ordering;
19use core::fmt::Display;
20use core::iter;
21use core::marker::PhantomData;
22use core::mem;
23use core::ptr::{self, NonNull};
24use core::slice;
25use core::str;
26use core_alloc::alloc::{alloc, dealloc, Layout};
27
28#[cfg(feature = "allocator_api")]
29use core_alloc::alloc::{AllocError, Allocator};
30
31#[cfg(all(feature = "allocator-api2", not(feature = "allocator_api")))]
32use allocator_api2::alloc::{AllocError, Allocator};
33
34pub use alloc::AllocErr;
35
36/// An error returned from [`Bump::try_alloc_try_with`].
37#[derive(Clone, PartialEq, Eq, Debug)]
38pub enum AllocOrInitError<E> {
39    /// Indicates that the initial allocation failed.
40    Alloc(AllocErr),
41    /// Indicates that the initializer failed with the contained error after
42    /// allocation.
43    ///
44    /// It is possible but not guaranteed that the allocated memory has been
45    /// released back to the allocator at this point.
46    Init(E),
47}
48impl<E> From<AllocErr> for AllocOrInitError<E> {
49    fn from(e: AllocErr) -> Self {
50        Self::Alloc(e)
51    }
52}
53impl<E: Display> Display for AllocOrInitError<E> {
54    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
55        match self {
56            AllocOrInitError::Alloc(err) => err.fmt(f),
57            AllocOrInitError::Init(err) => write!(f, "initialization failed: {}", err),
58        }
59    }
60}
61
62/// An arena to bump allocate into.
63///
64/// ## No `Drop`s
65///
66/// Objects that are bump-allocated will never have their [`Drop`] implementation
67/// called &mdash; unless you do it manually yourself. This makes it relatively
68/// easy to leak memory or other resources.
69///
70/// If you have a type which internally manages
71///
72/// * an allocation from the global heap (e.g. [`Vec<T>`]),
73/// * open file descriptors (e.g. [`std::fs::File`]), or
74/// * any other resource that must be cleaned up (e.g. an `mmap`)
75///
76/// and relies on its `Drop` implementation to clean up the internal resource,
77/// then if you allocate that type with a `Bump`, you need to find a new way to
78/// clean up after it yourself.
79///
80/// Potential solutions are:
81///
82/// * Using [`bumpalo::boxed::Box::new_in`] instead of [`Bump::alloc`], that
83///   will drop wrapped values similarly to [`std::boxed::Box`]. Note that this
84///   requires enabling the `"boxed"` Cargo feature for this crate. **This is
85///   often the easiest solution.**
86///
87/// * Calling [`drop_in_place`][drop_in_place] or using
88///   [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types.
89///
90/// * Using [`bumpalo::collections::Vec`] instead of [`std::vec::Vec`].
91///
92/// * Avoiding allocating these problematic types within a `Bump`.
93///
94/// Note that not calling `Drop` is memory safe! Destructors are never
95/// guaranteed to run in Rust, you can't rely on them for enforcing memory
96/// safety.
97///
98/// [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html
99/// [`Vec<T>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
100/// [`std::fs::File`]: https://doc.rust-lang.org/std/fs/struct.File.html
101/// [drop_in_place]: https://doc.rust-lang.org/std/ptr/fn.drop_in_place.html
102/// [manuallydrop]: https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
103/// [`bumpalo::collections::Vec`]: collections/vec/struct.Vec.html
104/// [`std::vec::Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
105/// [`bumpalo::boxed::Box::new_in`]: boxed/struct.Box.html#method.new_in
106/// [`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html
107///
108/// ## Example
109///
110/// ```
111/// use bumpalo::Bump;
112///
113/// // Create a new bump arena.
114/// let bump = Bump::new();
115///
116/// // Allocate values into the arena.
117/// let forty_two = bump.alloc(42);
118/// assert_eq!(*forty_two, 42);
119///
120/// // Mutable references are returned from allocation.
121/// let mut s = bump.alloc("bumpalo");
122/// *s = "the bump allocator; and also is a buffalo";
123/// ```
124///
125/// ## Allocation Methods Come in Many Flavors
126///
127/// There are various allocation methods on `Bump`, the simplest being
128/// [`alloc`][Bump::alloc]. The others exist to satisfy some combination of
129/// fallible allocation and initialization. The allocation methods are
130/// summarized in the following table:
131///
132/// <table>
133///   <thead>
134///     <tr>
135///       <th></th>
136///       <th>Infallible Allocation</th>
137///       <th>Fallible Allocation</th>
138///     </tr>
139///   </thead>
140///     <tr>
141///       <th>By Value</th>
142///       <td><a href="#method.alloc"><code>alloc</code></a></td>
143///       <td><a href="#method.try_alloc"><code>try_alloc</code></a></td>
144///     </tr>
145///     <tr>
146///       <th>Infallible Initializer Function</th>
147///       <td><a href="#method.alloc_with"><code>alloc_with</code></a></td>
148///       <td><a href="#method.try_alloc_with"><code>try_alloc_with</code></a></td>
149///     </tr>
150///     <tr>
151///       <th>Fallible Initializer Function</th>
152///       <td><a href="#method.alloc_try_with"><code>alloc_try_with</code></a></td>
153///       <td><a href="#method.try_alloc_try_with"><code>try_alloc_try_with</code></a></td>
154///     </tr>
155///   <tbody>
156///   </tbody>
157/// </table>
158///
159/// ### Fallible Allocation: The `try_alloc_` Method Prefix
160///
161/// These allocation methods let you recover from out-of-memory (OOM)
162/// scenarios, rather than raising a panic on OOM.
163///
164/// ```
165/// use bumpalo::Bump;
166///
167/// let bump = Bump::new();
168///
169/// match bump.try_alloc(MyStruct {
170///     // ...
171/// }) {
172///     Ok(my_struct) => {
173///         // Allocation succeeded.
174///     }
175///     Err(e) => {
176///         // Out of memory.
177///     }
178/// }
179///
180/// struct MyStruct {
181///     // ...
182/// }
183/// ```
184///
185/// ### Initializer Functions: The `_with` Method Suffix
186///
187/// Calling one of the generic `…alloc(x)` methods is essentially equivalent to
188/// the matching [`…alloc_with(|| x)`](?search=alloc_with). However if you use
189/// `…alloc_with`, then the closure will not be invoked until after allocating
190/// space for storing `x` on the heap.
191///
192/// This can be useful in certain edge-cases related to compiler optimizations.
193/// When evaluating for example `bump.alloc(x)`, semantically `x` is first put
194/// on the stack and then moved onto the heap. In some cases, the compiler is
195/// able to optimize this into constructing `x` directly on the heap, however
196/// in many cases it does not.
197///
198/// The `…alloc_with` functions try to help the compiler be smarter. In most
199/// cases doing for example `bump.try_alloc_with(|| x)` on release mode will be
200/// enough to help the compiler realize that this optimization is valid and
201/// to construct `x` directly onto the heap.
202///
203/// #### Warning
204///
205/// These functions critically depend on compiler optimizations to achieve their
206/// desired effect. This means that it is not an effective tool when compiling
207/// without optimizations on.
208///
209/// Even when optimizations are on, these functions do not **guarantee** that
210/// the value is constructed on the heap. To the best of our knowledge no such
211/// guarantee can be made in stable Rust as of 1.54.
212///
213/// ### Fallible Initialization: The `_try_with` Method Suffix
214///
215/// The generic [`…alloc_try_with(|| x)`](?search=_try_with) methods behave
216/// like the purely `_with` suffixed methods explained above. However, they
217/// allow for fallible initialization by accepting a closure that returns a
218/// [`Result`] and will attempt to undo the initial allocation if this closure
219/// returns [`Err`].
220///
221/// #### Warning
222///
223/// If the inner closure returns [`Ok`], space for the entire [`Result`] remains
224/// allocated inside `self`. This can be a problem especially if the [`Err`]
225/// variant is larger, but even otherwise there may be overhead for the
226/// [`Result`]'s discriminant.
227///
228/// <p><details><summary>Undoing the allocation in the <code>Err</code> case
229/// always fails if <code>f</code> successfully made any additional allocations
230/// in <code>self</code>.</summary>
231///
232/// For example, the following will always leak also space for the [`Result`]
233/// into this `Bump`, even though the inner reference isn't kept and the [`Err`]
234/// payload is returned semantically by value:
235///
236/// ```rust
237/// let bump = bumpalo::Bump::new();
238///
239/// let r: Result<&mut [u8; 1000], ()> = bump.alloc_try_with(|| {
240///     let _ = bump.alloc(0_u8);
241///     Err(())
242/// });
243///
244/// assert!(r.is_err());
245/// ```
246///
247///</details></p>
248///
249/// Since [`Err`] payloads are first placed on the heap and then moved to the
250/// stack, `bump.…alloc_try_with(|| x)?` is likely to execute more slowly than
251/// the matching `bump.…alloc(x?)` in case of initialization failure. If this
252/// happens frequently, using the plain un-suffixed method may perform better.
253///
254/// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
255/// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
256/// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
257///
258/// ### `Bump` Allocation Limits
259///
260/// `bumpalo` supports setting a limit on the maximum bytes of memory that can
261/// be allocated for use in a particular `Bump` arena. This limit can be set and removed with
262/// [`set_allocation_limit`][Bump::set_allocation_limit].
263/// The allocation limit is only enforced when allocating new backing chunks for
264/// a `Bump`. Updating the allocation limit will not affect existing allocations
265/// or any future allocations within the `Bump`'s current chunk.
266///
267/// #### Example
268///
269/// ```
270/// let bump = bumpalo::Bump::new();
271///
272/// assert_eq!(bump.allocation_limit(), None);
273/// bump.set_allocation_limit(Some(0));
274///
275/// assert!(bump.try_alloc(5).is_err());
276///
277/// bump.set_allocation_limit(Some(6));
278///
279/// assert_eq!(bump.allocation_limit(), Some(6));
280///
281/// bump.set_allocation_limit(None);
282///
283/// assert_eq!(bump.allocation_limit(), None);
284/// ```
285///
286/// #### Warning
287///
288/// Because of backwards compatibility, allocations that fail
289/// due to allocation limits will not present differently than
290/// errors due to resource exhaustion.
291#[derive(Debug)]
292pub struct Bump<const MIN_ALIGN: usize = 1> {
293    // The current chunk we are bump allocating within.
294    current_chunk_footer: Cell<NonNull<ChunkFooter>>,
295    allocation_limit: Cell<Option<usize>>,
296}
297
298#[repr(C)]
299#[derive(Debug)]
300struct ChunkFooter {
301    // Pointer to the start of this chunk allocation. This footer is always at
302    // the end of the chunk.
303    data: NonNull<u8>,
304
305    // The layout of this chunk's allocation.
306    layout: Layout,
307
308    // Link to the previous chunk.
309    //
310    // Note that the last node in the `prev` linked list is the canonical empty
311    // chunk, whose `prev` link points to itself.
312    prev: Cell<NonNull<ChunkFooter>>,
313
314    // Bump allocation finger that is always in the range `self.data..=self`.
315    ptr: Cell<NonNull<u8>>,
316
317    // The bytes allocated in all chunks so far, the canonical empty chunk has
318    // a size of 0 and for all other chunks, `allocated_bytes` will be
319    // the allocated_bytes of the current chunk plus the allocated bytes
320    // of the `prev` chunk.
321    allocated_bytes: usize,
322}
323
324/// A wrapper type for the canonical, statically allocated empty chunk.
325///
326/// For the canonical empty chunk to be `static`, its type must be `Sync`, which
327/// is the purpose of this wrapper type. This is safe because the empty chunk is
328/// immutable and never actually modified.
329#[repr(transparent)]
330struct EmptyChunkFooter(ChunkFooter);
331
332unsafe impl Sync for EmptyChunkFooter {}
333
334static EMPTY_CHUNK: EmptyChunkFooter = EmptyChunkFooter(ChunkFooter {
335    // This chunk is empty (except the foot itself).
336    layout: Layout::new::<ChunkFooter>(),
337
338    // The start of the (empty) allocatable region for this chunk is itself.
339    data: unsafe { NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8) },
340
341    // The end of the (empty) allocatable region for this chunk is also itself.
342    ptr: Cell::new(unsafe {
343        NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8)
344    }),
345
346    // Invariant: the last chunk footer in all `ChunkFooter::prev` linked lists
347    // is the empty chunk footer, whose `prev` points to itself.
348    prev: Cell::new(unsafe {
349        NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut ChunkFooter)
350    }),
351
352    // Empty chunks count as 0 allocated bytes in an arena.
353    allocated_bytes: 0,
354});
355
356impl EmptyChunkFooter {
357    fn get(&'static self) -> NonNull<ChunkFooter> {
358        NonNull::from(&self.0)
359    }
360}
361
362impl ChunkFooter {
363    // Returns the start and length of the currently allocated region of this
364    // chunk.
365    fn as_raw_parts(&self) -> (*const u8, usize) {
366        let data = self.data.as_ptr() as *const u8;
367        let ptr = self.ptr.get().as_ptr() as *const u8;
368        debug_assert!(data <= ptr);
369        debug_assert!(ptr <= self as *const ChunkFooter as *const u8);
370        let len = unsafe { (self as *const ChunkFooter as *const u8).offset_from(ptr) as usize };
371        (ptr, len)
372    }
373
374    /// Is this chunk the last empty chunk?
375    fn is_empty(&self) -> bool {
376        ptr::eq(self, EMPTY_CHUNK.get().as_ptr())
377    }
378}
379
380impl<const MIN_ALIGN: usize> Default for Bump<MIN_ALIGN> {
381    fn default() -> Self {
382        Self::with_min_align()
383    }
384}
385
386impl<const MIN_ALIGN: usize> Drop for Bump<MIN_ALIGN> {
387    fn drop(&mut self) {
388        unsafe {
389            dealloc_chunk_list(self.current_chunk_footer.get());
390        }
391    }
392}
393
394#[inline]
395unsafe fn dealloc_chunk_list(mut footer: NonNull<ChunkFooter>) {
396    while !footer.as_ref().is_empty() {
397        let f = footer;
398        footer = f.as_ref().prev.get();
399        dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout);
400    }
401}
402
403// `Bump`s are safe to send between threads because nothing aliases its owned
404// chunks until you start allocating from it. But by the time you allocate from
405// it, the returned references to allocations borrow the `Bump` and therefore
406// prevent sending the `Bump` across threads until the borrows end.
407unsafe impl<const MIN_ALIGN: usize> Send for Bump<MIN_ALIGN> {}
408
409#[inline]
410fn is_pointer_aligned_to<T>(pointer: *mut T, align: usize) -> bool {
411    debug_assert!(align.is_power_of_two());
412
413    let pointer = pointer as usize;
414    let pointer_aligned = round_down_to(pointer, align);
415    pointer == pointer_aligned
416}
417
418#[inline]
419pub(crate) const fn round_up_to(n: usize, divisor: usize) -> Option<usize> {
420    debug_assert!(divisor > 0);
421    debug_assert!(divisor.is_power_of_two());
422    match n.checked_add(divisor - 1) {
423        Some(x) => Some(x & !(divisor - 1)),
424        None => None,
425    }
426}
427
428/// Like `round_up_to` but turns overflow into undefined behavior rather than
429/// returning `None`.
430#[inline]
431pub(crate) unsafe fn round_up_to_unchecked(n: usize, divisor: usize) -> usize {
432    match round_up_to(n, divisor) {
433        Some(x) => x,
434        None => {
435            debug_assert!(false, "round_up_to_unchecked failed");
436            core::hint::unreachable_unchecked()
437        }
438    }
439}
440
441#[inline]
442pub(crate) fn round_down_to(n: usize, divisor: usize) -> usize {
443    debug_assert!(divisor > 0);
444    debug_assert!(divisor.is_power_of_two());
445    n & !(divisor - 1)
446}
447
448/// Same as `round_down_to` but preserves pointer provenance.
449#[inline]
450pub(crate) fn round_mut_ptr_down_to(ptr: *mut u8, divisor: usize) -> *mut u8 {
451    debug_assert!(divisor > 0);
452    debug_assert!(divisor.is_power_of_two());
453    ptr.wrapping_sub(ptr as usize & (divisor - 1))
454}
455
456#[inline]
457pub(crate) unsafe fn round_mut_ptr_up_to_unchecked(ptr: *mut u8, divisor: usize) -> *mut u8 {
458    debug_assert!(divisor > 0);
459    debug_assert!(divisor.is_power_of_two());
460    let aligned = round_up_to_unchecked(ptr as usize, divisor);
461    let delta = aligned - (ptr as usize);
462    ptr.add(delta)
463}
464
465// The typical page size these days.
466//
467// Note that we don't need to exactly match page size for correctness, and it is
468// okay if this is smaller than the real page size in practice. It isn't worth
469// the portability concerns and lack of const propagation that dynamically
470// looking up the actual page size implies.
471const TYPICAL_PAGE_SIZE: usize = 0x1000;
472
473// We only support alignments of up to 16 bytes for iter_allocated_chunks.
474const SUPPORTED_ITER_ALIGNMENT: usize = 16;
475const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT;
476const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>();
477
478// Assert that `ChunkFooter` is at most the supported alignment. This will give a
479// compile time error if it is not the case
480const _FOOTER_ALIGN_ASSERTION: () = {
481    assert!(mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN);
482};
483
484// Maximum typical overhead per allocation imposed by allocators.
485const MALLOC_OVERHEAD: usize = 16;
486
487// This is the overhead from malloc, footer and alignment. For instance, if
488// we want to request a chunk of memory that has at least X bytes usable for
489// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the
490// after adding a footer, malloc overhead and alignment, the chunk of memory
491// the allocator actually sets aside for us is X+OVERHEAD rounded up to the
492// nearest suitable size boundary.
493const OVERHEAD: usize = match round_up_to(MALLOC_OVERHEAD + FOOTER_SIZE, CHUNK_ALIGN) {
494    Some(x) => x,
495    None => panic!(),
496};
497
498// The target size of our first allocation, including our overhead. The
499// available bump capacity will be smaller.
500const FIRST_ALLOCATION_GOAL: usize = 1 << 9;
501
502// The actual size of the first allocation is going to be a bit smaller than the
503// goal. We need to make room for the footer, and we also need take the
504// alignment into account. We're trying to avoid this kind of situation:
505// https://blog.mozilla.org/nnethercote/2011/08/05/clownshoes-available-in-sizes-2101-and-up/
506const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD;
507
508/// The memory size and alignment details for a potential new chunk
509/// allocation.
510#[derive(Debug, Clone, Copy)]
511struct NewChunkMemoryDetails {
512    new_size_without_footer: usize,
513    align: usize,
514    size: usize,
515}
516
517/// Wrapper around `Layout::from_size_align` that adds debug assertions.
518#[inline]
519fn layout_from_size_align(size: usize, align: usize) -> Result<Layout, AllocErr> {
520    Layout::from_size_align(size, align).map_err(|_| AllocErr)
521}
522
523#[cold]
524#[inline(never)]
525fn allocation_size_overflow<T>() -> T {
526    panic!("requested allocation size overflowed")
527}
528
529// NB: We don't have constructors as methods on `impl<N> Bump<N>` that return
530// `Self` because then `rustc` can't infer the `N` if it isn't explicitly
531// provided, even though it has a default value. There doesn't seem to be a good
532// workaround, other than putting constructors on the `Bump<DEFAULT>`; even
533// `std` does this same thing with `HashMap`, for example.
534impl Bump<1> {
535    /// Construct a new arena to bump allocate into.
536    ///
537    /// ## Example
538    ///
539    /// ```
540    /// let bump = bumpalo::Bump::new();
541    /// # let _ = bump;
542    /// ```
543    pub fn new() -> Self {
544        Self::with_capacity(0)
545    }
546
547    /// Attempt to construct a new arena to bump allocate into.
548    ///
549    /// ## Example
550    ///
551    /// ```
552    /// let bump = bumpalo::Bump::try_new();
553    /// # let _ = bump.unwrap();
554    /// ```
555    pub fn try_new() -> Result<Self, AllocErr> {
556        Bump::try_with_capacity(0)
557    }
558
559    /// Construct a new arena with the specified byte capacity to bump allocate
560    /// into.
561    ///
562    /// ## Example
563    ///
564    /// ```
565    /// let bump = bumpalo::Bump::with_capacity(100);
566    /// # let _ = bump;
567    /// ```
568    ///
569    /// ## Panics
570    ///
571    /// Panics if allocating the initial capacity fails.
572    pub fn with_capacity(capacity: usize) -> Self {
573        Self::try_with_capacity(capacity).unwrap_or_else(|_| oom())
574    }
575
576    /// Attempt to construct a new arena with the specified byte capacity to
577    /// bump allocate into.
578    ///
579    /// Propagates errors when allocating the initial capacity.
580    ///
581    /// ## Example
582    ///
583    /// ```
584    /// # fn _foo() -> Result<(), bumpalo::AllocErr> {
585    /// let bump = bumpalo::Bump::try_with_capacity(100)?;
586    /// # let _ = bump;
587    /// # Ok(())
588    /// # }
589    /// ```
590    pub fn try_with_capacity(capacity: usize) -> Result<Self, AllocErr> {
591        Self::try_with_min_align_and_capacity(capacity)
592    }
593}
594
595impl<const MIN_ALIGN: usize> Bump<MIN_ALIGN> {
596    /// Create a new `Bump` that enforces a minimum alignment.
597    ///
598    /// The minimum alignment must be a power of two and no larger than `16`.
599    ///
600    /// Enforcing a minimum alignment can speed up allocation of objects with
601    /// alignment less than or equal to the minimum alignment. This comes at the
602    /// cost of introducing otherwise-unnecessary padding between allocations of
603    /// objects with alignment less than the minimum.
604    ///
605    /// # Example
606    ///
607    /// ```
608    /// type BumpAlign8 = bumpalo::Bump<8>;
609    /// let bump = BumpAlign8::with_min_align();
610    /// for x in 0..u8::MAX {
611    ///     let x = bump.alloc(x);
612    ///     assert_eq!((x as *mut _ as usize) % 8, 0, "x is aligned to 8");
613    /// }
614    /// ```
615    ///
616    /// # Panics
617    ///
618    /// Panics on invalid minimum alignments.
619    //
620    // Because of `rustc`'s poor type inference for default type/const
621    // parameters (see the comment above the `impl Bump` block with no const
622    // `MIN_ALIGN` parameter) and because we don't want to force everyone to
623    // specify a minimum alignment with `Bump::new()` et al, we have a separate
624    // constructor for specifying the minimum alignment.
625    pub fn with_min_align() -> Self {
626        assert!(
627            MIN_ALIGN.is_power_of_two(),
628            "MIN_ALIGN must be a power of two; found {MIN_ALIGN}"
629        );
630        assert!(
631            MIN_ALIGN <= CHUNK_ALIGN,
632            "MIN_ALIGN may not be larger than {CHUNK_ALIGN}; found {MIN_ALIGN}"
633        );
634
635        Bump {
636            current_chunk_footer: Cell::new(EMPTY_CHUNK.get()),
637            allocation_limit: Cell::new(None),
638        }
639    }
640
641    /// Create a new `Bump` that enforces a minimum alignment and starts with
642    /// room for at least `capacity` bytes.
643    ///
644    /// The minimum alignment must be a power of two and no larger than `16`.
645    ///
646    /// Enforcing a minimum alignment can speed up allocation of objects with
647    /// alignment less than or equal to the minimum alignment. This comes at the
648    /// cost of introducing otherwise-unnecessary padding between allocations of
649    /// objects with alignment less than the minimum.
650    ///
651    /// # Example
652    ///
653    /// ```
654    /// type BumpAlign8 = bumpalo::Bump<8>;
655    /// let mut bump = BumpAlign8::with_min_align_and_capacity(8 * 100);
656    /// for x in 0..100_u64 {
657    ///     let x = bump.alloc(x);
658    ///     assert_eq!((x as *mut _ as usize) % 8, 0, "x is aligned to 8");
659    /// }
660    /// assert_eq!(
661    ///     bump.iter_allocated_chunks().count(), 1,
662    ///     "initial chunk had capacity for all allocations",
663    /// );
664    /// ```
665    ///
666    /// # Panics
667    ///
668    /// Panics on invalid minimum alignments.
669    ///
670    /// Panics if allocating the initial capacity fails.
671    pub fn with_min_align_and_capacity(capacity: usize) -> Self {
672        Self::try_with_min_align_and_capacity(capacity).unwrap_or_else(|_| oom())
673    }
674
675    /// Create a new `Bump` that enforces a minimum alignment and starts with
676    /// room for at least `capacity` bytes.
677    ///
678    /// The minimum alignment must be a power of two and no larger than `16`.
679    ///
680    /// Enforcing a minimum alignment can speed up allocation of objects with
681    /// alignment less than or equal to the minimum alignment. This comes at the
682    /// cost of introducing otherwise-unnecessary padding between allocations of
683    /// objects with alignment less than the minimum.
684    ///
685    /// # Example
686    ///
687    /// ```
688    /// # fn _foo() -> Result<(), bumpalo::AllocErr> {
689    /// type BumpAlign8 = bumpalo::Bump<8>;
690    /// let mut bump = BumpAlign8::try_with_min_align_and_capacity(8 * 100)?;
691    /// for x in 0..100_u64 {
692    ///     let x = bump.alloc(x);
693    ///     assert_eq!((x as *mut _ as usize) % 8, 0, "x is aligned to 8");
694    /// }
695    /// assert_eq!(
696    ///     bump.iter_allocated_chunks().count(), 1,
697    ///     "initial chunk had capacity for all allocations",
698    /// );
699    /// # Ok(())
700    /// # }
701    /// ```
702    ///
703    /// # Panics
704    ///
705    /// Panics on invalid minimum alignments.
706    ///
707    /// Panics if allocating the initial capacity fails.
708    pub fn try_with_min_align_and_capacity(capacity: usize) -> Result<Self, AllocErr> {
709        assert!(
710            MIN_ALIGN.is_power_of_two(),
711            "MIN_ALIGN must be a power of two; found {MIN_ALIGN}"
712        );
713        assert!(
714            MIN_ALIGN <= CHUNK_ALIGN,
715            "MIN_ALIGN may not be larger than {CHUNK_ALIGN}; found {MIN_ALIGN}"
716        );
717
718        if capacity == 0 {
719            return Ok(Bump {
720                current_chunk_footer: Cell::new(EMPTY_CHUNK.get()),
721                allocation_limit: Cell::new(None),
722            });
723        }
724
725        let layout = layout_from_size_align(capacity, MIN_ALIGN)?;
726
727        let chunk_footer = unsafe {
728            Self::new_chunk(
729                Self::new_chunk_memory_details(None, layout).ok_or(AllocErr)?,
730                layout,
731                EMPTY_CHUNK.get(),
732            )
733            .ok_or(AllocErr)?
734        };
735
736        Ok(Bump {
737            current_chunk_footer: Cell::new(chunk_footer),
738            allocation_limit: Cell::new(None),
739        })
740    }
741
742    /// Get this bump arena's minimum alignment.
743    ///
744    /// All objects allocated in this arena get aligned to this value.
745    ///
746    /// ## Example
747    ///
748    /// ```
749    /// let bump2 = bumpalo::Bump::<2>::with_min_align();
750    /// assert_eq!(bump2.min_align(), 2);
751    ///
752    /// let bump4 = bumpalo::Bump::<4>::with_min_align();
753    /// assert_eq!(bump4.min_align(), 4);
754    /// ```
755    #[inline]
756    pub fn min_align(&self) -> usize {
757        MIN_ALIGN
758    }
759
760    /// The allocation limit for this arena in bytes.
761    ///
762    /// ## Example
763    ///
764    /// ```
765    /// let bump = bumpalo::Bump::with_capacity(0);
766    ///
767    /// assert_eq!(bump.allocation_limit(), None);
768    ///
769    /// bump.set_allocation_limit(Some(6));
770    ///
771    /// assert_eq!(bump.allocation_limit(), Some(6));
772    ///
773    /// bump.set_allocation_limit(None);
774    ///
775    /// assert_eq!(bump.allocation_limit(), None);
776    /// ```
777    pub fn allocation_limit(&self) -> Option<usize> {
778        self.allocation_limit.get()
779    }
780
781    /// Set the allocation limit in bytes for this arena.
782    ///
783    /// The allocation limit is only enforced when allocating new backing chunks for
784    /// a `Bump`. Updating the allocation limit will not affect existing allocations
785    /// or any future allocations within the `Bump`'s current chunk.
786    ///
787    /// ## Example
788    ///
789    /// ```
790    /// let bump = bumpalo::Bump::with_capacity(0);
791    ///
792    /// bump.set_allocation_limit(Some(0));
793    ///
794    /// assert!(bump.try_alloc(5).is_err());
795    /// ```
796    pub fn set_allocation_limit(&self, limit: Option<usize>) {
797        self.allocation_limit.set(limit);
798    }
799
800    /// How much headroom an arena has before it hits its allocation
801    /// limit.
802    fn allocation_limit_remaining(&self) -> Option<usize> {
803        self.allocation_limit.get().and_then(|allocation_limit| {
804            let allocated_bytes = self.allocated_bytes();
805            if allocated_bytes > allocation_limit {
806                None
807            } else {
808                Some(usize::abs_diff(allocation_limit, allocated_bytes))
809            }
810        })
811    }
812
813    /// Whether a request to allocate a new chunk with a given size for a given
814    /// requested layout will fit under the allocation limit set on a `Bump`.
815    fn chunk_fits_under_limit(
816        allocation_limit_remaining: Option<usize>,
817        new_chunk_memory_details: NewChunkMemoryDetails,
818    ) -> bool {
819        allocation_limit_remaining
820            .map(|allocation_limit_left| {
821                allocation_limit_left >= new_chunk_memory_details.new_size_without_footer
822            })
823            .unwrap_or(true)
824    }
825
826    /// Determine the memory details including final size, alignment and final
827    /// size without footer for a new chunk that would be allocated to fulfill
828    /// an allocation request.
829    fn new_chunk_memory_details(
830        new_size_without_footer: Option<usize>,
831        requested_layout: Layout,
832    ) -> Option<NewChunkMemoryDetails> {
833        // We must have `CHUNK_ALIGN` or better alignment...
834        let align = CHUNK_ALIGN
835            // and we have to have at least our configured minimum alignment...
836            .max(MIN_ALIGN)
837            // and make sure we satisfy the requested allocation's alignment.
838            .max(requested_layout.align());
839
840        let mut new_size_without_footer =
841            new_size_without_footer.unwrap_or(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
842
843        let requested_size =
844            round_up_to(requested_layout.size(), align).unwrap_or_else(allocation_size_overflow);
845        new_size_without_footer = new_size_without_footer.max(requested_size);
846
847        // We want our allocations to play nice with the memory allocator, and
848        // waste as little memory as possible. For small allocations, this means
849        // that the entire allocation including the chunk footer and mallocs
850        // internal overhead is as close to a power of two as we can go without
851        // going over. For larger allocations, we only need to get close to a
852        // page boundary without going over.
853        if new_size_without_footer < TYPICAL_PAGE_SIZE {
854            new_size_without_footer =
855                (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
856        } else {
857            new_size_without_footer =
858                round_up_to(new_size_without_footer + OVERHEAD, TYPICAL_PAGE_SIZE)? - OVERHEAD;
859        }
860
861        debug_assert_eq!(align % CHUNK_ALIGN, 0);
862        debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
863        let size = new_size_without_footer
864            .checked_add(FOOTER_SIZE)
865            .unwrap_or_else(allocation_size_overflow);
866
867        Some(NewChunkMemoryDetails {
868            new_size_without_footer,
869            size,
870            align,
871        })
872    }
873
874    /// Allocate a new chunk and return its initialized footer.
875    ///
876    /// If given, `layouts` is a tuple of the current chunk size and the
877    /// layout of the allocation request that triggered us to fall back to
878    /// allocating a new chunk of memory.
879    unsafe fn new_chunk(
880        new_chunk_memory_details: NewChunkMemoryDetails,
881        requested_layout: Layout,
882        prev: NonNull<ChunkFooter>,
883    ) -> Option<NonNull<ChunkFooter>> {
884        let NewChunkMemoryDetails {
885            new_size_without_footer,
886            align,
887            size,
888        } = new_chunk_memory_details;
889
890        let layout = layout_from_size_align(size, align).ok()?;
891
892        debug_assert!(size >= requested_layout.size());
893
894        let data = alloc(layout);
895        let data = NonNull::new(data)?;
896
897        // The `ChunkFooter` is at the end of the chunk.
898        let footer_ptr = data.as_ptr().add(new_size_without_footer);
899        debug_assert_eq!((data.as_ptr() as usize) % align, 0);
900        debug_assert_eq!(footer_ptr as usize % CHUNK_ALIGN, 0);
901        let footer_ptr = footer_ptr as *mut ChunkFooter;
902
903        // The bump pointer is initialized to the end of the range we will bump
904        // out of, rounded down to the minimum alignment. It is the
905        // `NewChunkMemoryDetails` constructor's responsibility to ensure that
906        // even after this rounding we have enough non-zero capacity in the
907        // chunk.
908        let ptr = round_mut_ptr_down_to(footer_ptr.cast::<u8>(), MIN_ALIGN);
909        debug_assert_eq!(ptr as usize % MIN_ALIGN, 0);
910        debug_assert!(
911            data.as_ptr() < ptr,
912            "bump pointer {ptr:#p} should still be greater than or equal to the \
913             start of the bump chunk {data:#p}"
914        );
915        debug_assert_eq!(
916            (ptr as usize) - (data.as_ptr() as usize),
917            new_size_without_footer
918        );
919
920        let ptr = Cell::new(NonNull::new_unchecked(ptr));
921
922        // The `allocated_bytes` of a new chunk counts the total size
923        // of the chunks, not how much of the chunks are used.
924        let allocated_bytes = prev.as_ref().allocated_bytes + new_size_without_footer;
925
926        ptr::write(
927            footer_ptr,
928            ChunkFooter {
929                data,
930                layout,
931                prev: Cell::new(prev),
932                ptr,
933                allocated_bytes,
934            },
935        );
936
937        Some(NonNull::new_unchecked(footer_ptr))
938    }
939
940    /// Reset this bump allocator.
941    ///
942    /// Performs mass deallocation on everything allocated in this arena by
943    /// resetting the pointer into the underlying chunk of memory to the start
944    /// of the chunk. Does not run any `Drop` implementations on deallocated
945    /// objects; see [the top-level documentation](struct.Bump.html) for details.
946    ///
947    /// If this arena has allocated multiple chunks to bump allocate into, then
948    /// the excess chunks are returned to the global allocator.
949    ///
950    /// ## Example
951    ///
952    /// ```
953    /// let mut bump = bumpalo::Bump::new();
954    ///
955    /// // Allocate a bunch of things.
956    /// {
957    ///     for i in 0..100 {
958    ///         bump.alloc(i);
959    ///     }
960    /// }
961    ///
962    /// // Reset the arena.
963    /// bump.reset();
964    ///
965    /// // Allocate some new things in the space previously occupied by the
966    /// // original things.
967    /// for j in 200..400 {
968    ///     bump.alloc(j);
969    /// }
970    ///```
971    pub fn reset(&mut self) {
972        // Takes `&mut self` so `self` must be unique and there can't be any
973        // borrows active that would get invalidated by resetting.
974        unsafe {
975            if self.current_chunk_footer.get().as_ref().is_empty() {
976                return;
977            }
978
979            let mut cur_chunk = self.current_chunk_footer.get();
980
981            // Deallocate all chunks except the current one
982            let prev_chunk = cur_chunk.as_ref().prev.replace(EMPTY_CHUNK.get());
983            dealloc_chunk_list(prev_chunk);
984
985            // Reset the bump finger to the end of the chunk.
986            debug_assert!(
987                is_pointer_aligned_to(cur_chunk.as_ptr(), MIN_ALIGN),
988                "bump pointer {cur_chunk:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
989            );
990            cur_chunk.as_ref().ptr.set(cur_chunk.cast());
991
992            // Reset the allocated size of the chunk.
993            cur_chunk.as_mut().allocated_bytes = cur_chunk.as_ref().layout.size() - FOOTER_SIZE;
994
995            debug_assert!(
996                self.current_chunk_footer
997                    .get()
998                    .as_ref()
999                    .prev
1000                    .get()
1001                    .as_ref()
1002                    .is_empty(),
1003                "We should only have a single chunk"
1004            );
1005            debug_assert_eq!(
1006                self.current_chunk_footer.get().as_ref().ptr.get(),
1007                self.current_chunk_footer.get().cast(),
1008                "Our chunk's bump finger should be reset to the start of its allocation"
1009            );
1010        }
1011    }
1012
1013    /// Allocate an object in this `Bump` and return an exclusive reference to
1014    /// it.
1015    ///
1016    /// ## Panics
1017    ///
1018    /// Panics if reserving space for `T` fails.
1019    ///
1020    /// ## Example
1021    ///
1022    /// ```
1023    /// let bump = bumpalo::Bump::new();
1024    /// let x = bump.alloc("hello");
1025    /// assert_eq!(*x, "hello");
1026    /// ```
1027    #[inline(always)]
1028    pub fn alloc<T>(&self, val: T) -> &mut T {
1029        self.alloc_with(|| val)
1030    }
1031
1032    /// Try to allocate an object in this `Bump` and return an exclusive
1033    /// reference to it.
1034    ///
1035    /// ## Errors
1036    ///
1037    /// Errors if reserving space for `T` fails.
1038    ///
1039    /// ## Example
1040    ///
1041    /// ```
1042    /// let bump = bumpalo::Bump::new();
1043    /// let x = bump.try_alloc("hello");
1044    /// assert_eq!(x, Ok(&mut "hello"));
1045    /// ```
1046    #[inline(always)]
1047    pub fn try_alloc<T>(&self, val: T) -> Result<&mut T, AllocErr> {
1048        self.try_alloc_with(|| val)
1049    }
1050
1051    /// Pre-allocate space for an object in this `Bump`, initializes it using
1052    /// the closure, then returns an exclusive reference to it.
1053    ///
1054    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1055    /// discussion on the differences between the `_with` suffixed methods and
1056    /// those methods without it, their performance characteristics, and when
1057    /// you might or might not choose a `_with` suffixed method.
1058    ///
1059    /// ## Panics
1060    ///
1061    /// Panics if reserving space for `T` fails.
1062    ///
1063    /// ## Example
1064    ///
1065    /// ```
1066    /// let bump = bumpalo::Bump::new();
1067    /// let x = bump.alloc_with(|| "hello");
1068    /// assert_eq!(*x, "hello");
1069    /// ```
1070    #[inline(always)]
1071    pub fn alloc_with<F, T>(&self, f: F) -> &mut T
1072    where
1073        F: FnOnce() -> T,
1074    {
1075        #[inline(always)]
1076        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
1077        where
1078            F: FnOnce() -> T,
1079        {
1080            // This function is translated as:
1081            // - allocate space for a T on the stack
1082            // - call f() with the return value being put onto this stack space
1083            // - memcpy from the stack to the heap
1084            //
1085            // Ideally we want LLVM to always realize that doing a stack
1086            // allocation is unnecessary and optimize the code so it writes
1087            // directly into the heap instead. It seems we get it to realize
1088            // this most consistently if we put this critical line into it's
1089            // own function instead of inlining it into the surrounding code.
1090            ptr::write(ptr, f());
1091        }
1092
1093        let layout = Layout::new::<T>();
1094
1095        unsafe {
1096            let p = self.alloc_layout(layout);
1097            let p = p.as_ptr() as *mut T;
1098            inner_writer(p, f);
1099            &mut *p
1100        }
1101    }
1102
1103    /// Tries to pre-allocate space for an object in this `Bump`, initializes
1104    /// it using the closure, then returns an exclusive reference to it.
1105    ///
1106    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1107    /// discussion on the differences between the `_with` suffixed methods and
1108    /// those methods without it, their performance characteristics, and when
1109    /// you might or might not choose a `_with` suffixed method.
1110    ///
1111    /// ## Errors
1112    ///
1113    /// Errors if reserving space for `T` fails.
1114    ///
1115    /// ## Example
1116    ///
1117    /// ```
1118    /// let bump = bumpalo::Bump::new();
1119    /// let x = bump.try_alloc_with(|| "hello");
1120    /// assert_eq!(x, Ok(&mut "hello"));
1121    /// ```
1122    #[inline(always)]
1123    pub fn try_alloc_with<F, T>(&self, f: F) -> Result<&mut T, AllocErr>
1124    where
1125        F: FnOnce() -> T,
1126    {
1127        #[inline(always)]
1128        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
1129        where
1130            F: FnOnce() -> T,
1131        {
1132            // This function is translated as:
1133            // - allocate space for a T on the stack
1134            // - call f() with the return value being put onto this stack space
1135            // - memcpy from the stack to the heap
1136            //
1137            // Ideally we want LLVM to always realize that doing a stack
1138            // allocation is unnecessary and optimize the code so it writes
1139            // directly into the heap instead. It seems we get it to realize
1140            // this most consistently if we put this critical line into it's
1141            // own function instead of inlining it into the surrounding code.
1142            ptr::write(ptr, f());
1143        }
1144
1145        //SAFETY: Self-contained:
1146        // `p` is allocated for `T` and then a `T` is written.
1147        let layout = Layout::new::<T>();
1148        let p = self.try_alloc_layout(layout)?;
1149        let p = p.as_ptr() as *mut T;
1150
1151        unsafe {
1152            inner_writer(p, f);
1153            Ok(&mut *p)
1154        }
1155    }
1156
1157    /// Pre-allocates space for a [`Result`] in this `Bump`, initializes it using
1158    /// the closure, then returns an exclusive reference to its `T` if [`Ok`].
1159    ///
1160    /// Iff the allocation fails, the closure is not run.
1161    ///
1162    /// Iff [`Err`], an allocator rewind is *attempted* and the `E` instance is
1163    /// moved out of the allocator to be consumed or dropped as normal.
1164    ///
1165    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1166    /// discussion on the differences between the `_with` suffixed methods and
1167    /// those methods without it, their performance characteristics, and when
1168    /// you might or might not choose a `_with` suffixed method.
1169    ///
1170    /// For caveats specific to fallible initialization, see
1171    /// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix).
1172    ///
1173    /// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
1174    /// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
1175    /// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
1176    ///
1177    /// ## Errors
1178    ///
1179    /// Iff the allocation succeeds but `f` fails, that error is forwarded by value.
1180    ///
1181    /// ## Panics
1182    ///
1183    /// Panics if reserving space for `Result<T, E>` fails.
1184    ///
1185    /// ## Example
1186    ///
1187    /// ```
1188    /// let bump = bumpalo::Bump::new();
1189    /// let x = bump.alloc_try_with(|| Ok("hello"))?;
1190    /// assert_eq!(*x, "hello");
1191    /// # Result::<_, ()>::Ok(())
1192    /// ```
1193    #[inline(always)]
1194    pub fn alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, E>
1195    where
1196        F: FnOnce() -> Result<T, E>,
1197    {
1198        let rewind_footer = self.current_chunk_footer.get();
1199        let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
1200        let mut inner_result_ptr = NonNull::from(self.alloc_with(f));
1201        match unsafe { inner_result_ptr.as_mut() } {
1202            Ok(t) => Ok(unsafe {
1203                //SAFETY:
1204                // The `&mut Result<T, E>` returned by `alloc_with` may be
1205                // lifetime-limited by `E`, but the derived `&mut T` still has
1206                // the same validity as in `alloc_with` since the error variant
1207                // is already ruled out here.
1208
1209                // We could conditionally truncate the allocation here, but
1210                // since it grows backwards, it seems unlikely that we'd get
1211                // any more than the `Result`'s discriminant this way, if
1212                // anything at all.
1213                &mut *(t as *mut _)
1214            }),
1215            Err(e) => unsafe {
1216                // If this result was the last allocation in this arena, we can
1217                // reclaim its space. In fact, sometimes we can do even better
1218                // than simply calling `dealloc` on the result pointer: we can
1219                // reclaim any alignment padding we might have added (which
1220                // `dealloc` cannot do) if we didn't allocate a new chunk for
1221                // this result.
1222                if self.is_last_allocation(inner_result_ptr.cast()) {
1223                    let current_footer_p = self.current_chunk_footer.get();
1224                    let current_ptr = &current_footer_p.as_ref().ptr;
1225                    if current_footer_p == rewind_footer {
1226                        // It's still the same chunk, so reset the bump pointer
1227                        // to its original value upon entry to this method
1228                        // (reclaiming any alignment padding we may have
1229                        // added).
1230                        current_ptr.set(rewind_ptr);
1231                    } else {
1232                        // We allocated a new chunk for this result.
1233                        //
1234                        // We know the result is the only allocation in this
1235                        // chunk: Any additional allocations since the start of
1236                        // this method could only have happened when running
1237                        // the initializer function, which is called *after*
1238                        // reserving space for this result. Therefore, since we
1239                        // already determined via the check above that this
1240                        // result was the last allocation, there must not have
1241                        // been any other allocations, and this result is the
1242                        // only allocation in this chunk.
1243                        //
1244                        // Because this is the only allocation in this chunk,
1245                        // we can reset the chunk's bump finger to the start of
1246                        // the chunk.
1247                        current_ptr.set(current_footer_p.as_ref().data);
1248                    }
1249                }
1250                //SAFETY:
1251                // As we received `E` semantically by value from `f`, we can
1252                // just copy that value here as long as we avoid a double-drop
1253                // (which can't happen as any specific references to the `E`'s
1254                // data in `self` are destroyed when this function returns).
1255                //
1256                // The order between this and the deallocation doesn't matter
1257                // because `Self: !Sync`.
1258                Err(ptr::read(e as *const _))
1259            },
1260        }
1261    }
1262
1263    /// Tries to pre-allocates space for a [`Result`] in this `Bump`,
1264    /// initializes it using the closure, then returns an exclusive reference
1265    /// to its `T` if all [`Ok`].
1266    ///
1267    /// Iff the allocation fails, the closure is not run.
1268    ///
1269    /// Iff the closure returns [`Err`], an allocator rewind is *attempted* and
1270    /// the `E` instance is moved out of the allocator to be consumed or dropped
1271    /// as normal.
1272    ///
1273    /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a
1274    /// discussion on the differences between the `_with` suffixed methods and
1275    /// those methods without it, their performance characteristics, and when
1276    /// you might or might not choose a `_with` suffixed method.
1277    ///
1278    /// For caveats specific to fallible initialization, see
1279    /// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix).
1280    ///
1281    /// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
1282    /// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok
1283    /// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
1284    ///
1285    /// ## Errors
1286    ///
1287    /// Errors with the [`Alloc`](`AllocOrInitError::Alloc`) variant iff
1288    /// reserving space for `Result<T, E>` fails.
1289    ///
1290    /// Iff the allocation succeeds but `f` fails, that error is forwarded by
1291    /// value inside the [`Init`](`AllocOrInitError::Init`) variant.
1292    ///
1293    /// ## Example
1294    ///
1295    /// ```
1296    /// let bump = bumpalo::Bump::new();
1297    /// let x = bump.try_alloc_try_with(|| Ok("hello"))?;
1298    /// assert_eq!(*x, "hello");
1299    /// # Result::<_, bumpalo::AllocOrInitError<()>>::Ok(())
1300    /// ```
1301    #[inline(always)]
1302    pub fn try_alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, AllocOrInitError<E>>
1303    where
1304        F: FnOnce() -> Result<T, E>,
1305    {
1306        let rewind_footer = self.current_chunk_footer.get();
1307        let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
1308        let mut inner_result_ptr = NonNull::from(self.try_alloc_with(f)?);
1309        match unsafe { inner_result_ptr.as_mut() } {
1310            Ok(t) => Ok(unsafe {
1311                //SAFETY:
1312                // The `&mut Result<T, E>` returned by `alloc_with` may be
1313                // lifetime-limited by `E`, but the derived `&mut T` still has
1314                // the same validity as in `alloc_with` since the error variant
1315                // is already ruled out here.
1316
1317                // We could conditionally truncate the allocation here, but
1318                // since it grows backwards, it seems unlikely that we'd get
1319                // any more than the `Result`'s discriminant this way, if
1320                // anything at all.
1321                &mut *(t as *mut _)
1322            }),
1323            Err(e) => unsafe {
1324                // If this result was the last allocation in this arena, we can
1325                // reclaim its space. In fact, sometimes we can do even better
1326                // than simply calling `dealloc` on the result pointer: we can
1327                // reclaim any alignment padding we might have added (which
1328                // `dealloc` cannot do) if we didn't allocate a new chunk for
1329                // this result.
1330                if self.is_last_allocation(inner_result_ptr.cast()) {
1331                    let current_footer_p = self.current_chunk_footer.get();
1332                    let current_ptr = &current_footer_p.as_ref().ptr;
1333                    if current_footer_p == rewind_footer {
1334                        // It's still the same chunk, so reset the bump pointer
1335                        // to its original value upon entry to this method
1336                        // (reclaiming any alignment padding we may have
1337                        // added).
1338                        current_ptr.set(rewind_ptr);
1339                    } else {
1340                        // We allocated a new chunk for this result.
1341                        //
1342                        // We know the result is the only allocation in this
1343                        // chunk: Any additional allocations since the start of
1344                        // this method could only have happened when running
1345                        // the initializer function, which is called *after*
1346                        // reserving space for this result. Therefore, since we
1347                        // already determined via the check above that this
1348                        // result was the last allocation, there must not have
1349                        // been any other allocations, and this result is the
1350                        // only allocation in this chunk.
1351                        //
1352                        // Because this is the only allocation in this chunk,
1353                        // we can reset the chunk's bump finger to the start of
1354                        // the chunk.
1355                        current_ptr.set(current_footer_p.as_ref().data);
1356                    }
1357                }
1358                //SAFETY:
1359                // As we received `E` semantically by value from `f`, we can
1360                // just copy that value here as long as we avoid a double-drop
1361                // (which can't happen as any specific references to the `E`'s
1362                // data in `self` are destroyed when this function returns).
1363                //
1364                // The order between this and the deallocation doesn't matter
1365                // because `Self: !Sync`.
1366                Err(AllocOrInitError::Init(ptr::read(e as *const _)))
1367            },
1368        }
1369    }
1370
1371    /// `Copy` a slice into this `Bump` and return an exclusive reference to
1372    /// the copy.
1373    ///
1374    /// ## Panics
1375    ///
1376    /// Panics if reserving space for the slice fails.
1377    ///
1378    /// ## Example
1379    ///
1380    /// ```
1381    /// let bump = bumpalo::Bump::new();
1382    /// let x = bump.alloc_slice_copy(&[1, 2, 3]);
1383    /// assert_eq!(x, &[1, 2, 3]);
1384    /// ```
1385    #[inline(always)]
1386    pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
1387    where
1388        T: Copy,
1389    {
1390        let layout = Layout::for_value(src);
1391        let dst = self.alloc_layout(layout).cast::<T>();
1392
1393        unsafe {
1394            ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
1395            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1396        }
1397    }
1398
1399    /// Like `alloc_slice_copy`, but does not panic in case of allocation failure.
1400    ///
1401    /// ## Example
1402    ///
1403    /// ```
1404    /// let bump = bumpalo::Bump::new();
1405    /// let x = bump.try_alloc_slice_copy(&[1, 2, 3]);
1406    /// assert_eq!(x, Ok(&mut[1, 2, 3] as &mut [_]));
1407    ///
1408    ///
1409    /// let bump = bumpalo::Bump::new();
1410    /// bump.set_allocation_limit(Some(4));
1411    /// let x = bump.try_alloc_slice_copy(&[1, 2, 3, 4, 5, 6]);
1412    /// assert_eq!(x, Err(bumpalo::AllocErr)); // too big
1413    /// ```
1414    #[inline(always)]
1415    pub fn try_alloc_slice_copy<T>(&self, src: &[T]) -> Result<&mut [T], AllocErr>
1416    where
1417        T: Copy,
1418    {
1419        let layout = Layout::for_value(src);
1420        let dst = self.try_alloc_layout(layout)?.cast::<T>();
1421        let result = unsafe {
1422            core::ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
1423            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1424        };
1425        Ok(result)
1426    }
1427
1428    /// `Clone` a slice into this `Bump` and return an exclusive reference to
1429    /// the clone. Prefer [`alloc_slice_copy`](#method.alloc_slice_copy) if `T` is `Copy`.
1430    ///
1431    /// ## Panics
1432    ///
1433    /// Panics if reserving space for the slice fails.
1434    ///
1435    /// ## Example
1436    ///
1437    /// ```
1438    /// #[derive(Clone, Debug, Eq, PartialEq)]
1439    /// struct Sheep {
1440    ///     name: String,
1441    /// }
1442    ///
1443    /// let originals = [
1444    ///     Sheep { name: "Alice".into() },
1445    ///     Sheep { name: "Bob".into() },
1446    ///     Sheep { name: "Cathy".into() },
1447    /// ];
1448    ///
1449    /// let bump = bumpalo::Bump::new();
1450    /// let clones = bump.alloc_slice_clone(&originals);
1451    /// assert_eq!(originals, clones);
1452    /// ```
1453    #[inline(always)]
1454    pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T]
1455    where
1456        T: Clone,
1457    {
1458        let layout = Layout::for_value(src);
1459        let dst = self.alloc_layout(layout).cast::<T>();
1460
1461        unsafe {
1462            for (i, val) in src.iter().cloned().enumerate() {
1463                ptr::write(dst.as_ptr().add(i), val);
1464            }
1465
1466            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
1467        }
1468    }
1469
1470    /// Like `alloc_slice_clone` but does not panic on failure.
1471    #[inline(always)]
1472    pub fn try_alloc_slice_clone<T>(&self, src: &[T]) -> Result<&mut [T], AllocErr>
1473    where
1474        T: Clone,
1475    {
1476        let layout = Layout::for_value(src);
1477        let dst = self.try_alloc_layout(layout)?.cast::<T>();
1478
1479        unsafe {
1480            for (i, val) in src.iter().cloned().enumerate() {
1481                ptr::write(dst.as_ptr().add(i), val);
1482            }
1483
1484            Ok(slice::from_raw_parts_mut(dst.as_ptr(), src.len()))
1485        }
1486    }
1487
1488    /// `Copy` a string slice into this `Bump` and return an exclusive reference to it.
1489    ///
1490    /// ## Panics
1491    ///
1492    /// Panics if reserving space for the string fails.
1493    ///
1494    /// ## Example
1495    ///
1496    /// ```
1497    /// let bump = bumpalo::Bump::new();
1498    /// let hello = bump.alloc_str("hello world");
1499    /// assert_eq!("hello world", hello);
1500    /// ```
1501    #[inline(always)]
1502    pub fn alloc_str(&self, src: &str) -> &mut str {
1503        let buffer = self.alloc_slice_copy(src.as_bytes());
1504        unsafe {
1505            // This is OK, because it already came in as str, so it is guaranteed to be utf8
1506            str::from_utf8_unchecked_mut(buffer)
1507        }
1508    }
1509
1510    /// Same as `alloc_str` but does not panic on failure.
1511    ///
1512    /// ## Example
1513    ///
1514    /// ```
1515    /// let bump = bumpalo::Bump::new();
1516    /// let hello = bump.try_alloc_str("hello world").unwrap();
1517    /// assert_eq!("hello world", hello);
1518    ///
1519    ///
1520    /// let bump = bumpalo::Bump::new();
1521    /// bump.set_allocation_limit(Some(5));
1522    /// let hello = bump.try_alloc_str("hello world");
1523    /// assert_eq!(Err(bumpalo::AllocErr), hello);
1524    /// ```
1525    #[inline(always)]
1526    pub fn try_alloc_str(&self, src: &str) -> Result<&mut str, AllocErr> {
1527        let buffer = self.try_alloc_slice_copy(src.as_bytes())?;
1528        unsafe {
1529            // This is OK, because it already came in as str, so it is guaranteed to be utf8
1530            Ok(str::from_utf8_unchecked_mut(buffer))
1531        }
1532    }
1533
1534    /// Allocates a new slice of size `len` into this `Bump` and returns an
1535    /// exclusive reference to the copy.
1536    ///
1537    /// The elements of the slice are initialized using the supplied closure.
1538    /// The closure argument is the position in the slice.
1539    ///
1540    /// ## Panics
1541    ///
1542    /// Panics if reserving space for the slice fails.
1543    ///
1544    /// ## Example
1545    ///
1546    /// ```
1547    /// let bump = bumpalo::Bump::new();
1548    /// let x = bump.alloc_slice_fill_with(5, |i| 5 * (i + 1));
1549    /// assert_eq!(x, &[5, 10, 15, 20, 25]);
1550    /// ```
1551    #[inline(always)]
1552    pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
1553    where
1554        F: FnMut(usize) -> T,
1555    {
1556        let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
1557        let dst = self.alloc_layout(layout).cast::<T>();
1558
1559        unsafe {
1560            for i in 0..len {
1561                ptr::write(dst.as_ptr().add(i), f(i));
1562            }
1563
1564            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1565            debug_assert_eq!(Layout::for_value(result), layout);
1566            result
1567        }
1568    }
1569
1570    /// Allocates a new slice of size `len` into this `Bump` and returns an
1571    /// exclusive reference to the copy, failing if the closure return an Err.
1572    ///
1573    /// The elements of the slice are initialized using the supplied closure.
1574    /// The closure argument is the position in the slice.
1575    ///
1576    /// ## Panics
1577    ///
1578    /// Panics if reserving space for the slice fails.
1579    ///
1580    /// ## Example
1581    ///
1582    /// ```
1583    /// let bump = bumpalo::Bump::new();
1584    /// let x: Result<&mut [usize], ()> = bump.alloc_slice_try_fill_with(5, |i| Ok(5 * i));
1585    /// assert_eq!(x, Ok(bump.alloc_slice_copy(&[0, 5, 10, 15, 20])));
1586    /// ```
1587    ///
1588    /// ```
1589    /// let bump = bumpalo::Bump::new();
1590    /// let x: Result<&mut [usize], ()> = bump.alloc_slice_try_fill_with(
1591    ///    5,
1592    ///    |n| if n == 2 { Err(()) } else { Ok(n) }
1593    /// );
1594    /// assert_eq!(x, Err(()));
1595    /// ```
1596    #[inline(always)]
1597    pub fn alloc_slice_try_fill_with<T, F, E>(&self, len: usize, mut f: F) -> Result<&mut [T], E>
1598    where
1599        F: FnMut(usize) -> Result<T, E>,
1600    {
1601        let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
1602        let base_ptr = self.alloc_layout(layout);
1603        let dst = base_ptr.cast::<T>();
1604
1605        unsafe {
1606            for i in 0..len {
1607                match f(i) {
1608                    Ok(el) => ptr::write(dst.as_ptr().add(i), el),
1609                    Err(e) => {
1610                        self.dealloc(base_ptr, layout);
1611                        return Err(e);
1612                    }
1613                }
1614            }
1615
1616            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1617            debug_assert_eq!(Layout::for_value(result), layout);
1618            Ok(result)
1619        }
1620    }
1621
1622    /// Allocates a new slice of size `len` into this `Bump` and returns an
1623    /// exclusive reference to the copy.
1624    ///
1625    /// The elements of the slice are initialized using the supplied closure.
1626    /// The closure argument is the position in the slice.
1627    ///
1628    /// ## Example
1629    ///
1630    /// ```
1631    /// let bump = bumpalo::Bump::new();
1632    /// let x = bump.try_alloc_slice_fill_with(5, |i| 5 * (i + 1));
1633    /// assert_eq!(x, Ok(&mut[5usize, 10, 15, 20, 25] as &mut [_]));
1634    ///
1635    ///
1636    /// let bump = bumpalo::Bump::new();
1637    /// bump.set_allocation_limit(Some(4));
1638    /// let x = bump.try_alloc_slice_fill_with(10, |i| 5 * (i + 1));
1639    /// assert_eq!(x, Err(bumpalo::AllocErr));
1640    /// ```
1641    #[inline(always)]
1642    pub fn try_alloc_slice_fill_with<T, F>(
1643        &self,
1644        len: usize,
1645        mut f: F,
1646    ) -> Result<&mut [T], AllocErr>
1647    where
1648        F: FnMut(usize) -> T,
1649    {
1650        let layout = Layout::array::<T>(len).map_err(|_| AllocErr)?;
1651        let dst = self.try_alloc_layout(layout)?.cast::<T>();
1652
1653        unsafe {
1654            for i in 0..len {
1655                ptr::write(dst.as_ptr().add(i), f(i));
1656            }
1657
1658            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
1659            debug_assert_eq!(Layout::for_value(result), layout);
1660            Ok(result)
1661        }
1662    }
1663
1664    /// Allocates a new slice of size `len` into this `Bump` and returns an
1665    /// exclusive reference to the copy.
1666    ///
1667    /// All elements of the slice are initialized to `value`.
1668    ///
1669    /// ## Panics
1670    ///
1671    /// Panics if reserving space for the slice fails.
1672    ///
1673    /// ## Example
1674    ///
1675    /// ```
1676    /// let bump = bumpalo::Bump::new();
1677    /// let x = bump.alloc_slice_fill_copy(5, 42);
1678    /// assert_eq!(x, &[42, 42, 42, 42, 42]);
1679    /// ```
1680    #[inline(always)]
1681    pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
1682        self.alloc_slice_fill_with(len, |_| value)
1683    }
1684
1685    /// Same as `alloc_slice_fill_copy` but does not panic on failure.
1686    #[inline(always)]
1687    pub fn try_alloc_slice_fill_copy<T: Copy>(
1688        &self,
1689        len: usize,
1690        value: T,
1691    ) -> Result<&mut [T], AllocErr> {
1692        self.try_alloc_slice_fill_with(len, |_| value)
1693    }
1694
1695    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1696    /// exclusive reference to the copy.
1697    ///
1698    /// All elements of the slice are initialized to `value.clone()`.
1699    ///
1700    /// ## Panics
1701    ///
1702    /// Panics if reserving space for the slice fails.
1703    ///
1704    /// ## Example
1705    ///
1706    /// ```
1707    /// let bump = bumpalo::Bump::new();
1708    /// let s: String = "Hello Bump!".to_string();
1709    /// let x: &[String] = bump.alloc_slice_fill_clone(2, &s);
1710    /// assert_eq!(x.len(), 2);
1711    /// assert_eq!(&x[0], &s);
1712    /// assert_eq!(&x[1], &s);
1713    /// ```
1714    #[inline(always)]
1715    pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] {
1716        self.alloc_slice_fill_with(len, |_| value.clone())
1717    }
1718
1719    /// Like `alloc_slice_fill_clone` but does not panic on failure.
1720    #[inline(always)]
1721    pub fn try_alloc_slice_fill_clone<T: Clone>(
1722        &self,
1723        len: usize,
1724        value: &T,
1725    ) -> Result<&mut [T], AllocErr> {
1726        self.try_alloc_slice_fill_with(len, |_| value.clone())
1727    }
1728
1729    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1730    /// exclusive reference to the copy.
1731    ///
1732    /// The elements are initialized using the supplied iterator.
1733    ///
1734    /// ## Panics
1735    ///
1736    /// Panics if reserving space for the slice fails, or if the supplied
1737    /// iterator returns fewer elements than it promised.
1738    ///
1739    /// ## Example
1740    ///
1741    /// ```
1742    /// let bump = bumpalo::Bump::new();
1743    /// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i));
1744    /// assert_eq!(x, [4, 9, 25]);
1745    /// ```
1746    #[inline(always)]
1747    pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
1748    where
1749        I: IntoIterator<Item = T>,
1750        I::IntoIter: ExactSizeIterator,
1751    {
1752        let mut iter = iter.into_iter();
1753        self.alloc_slice_fill_with(iter.len(), |_| {
1754            iter.next().expect("Iterator supplied too few elements")
1755        })
1756    }
1757
1758    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1759    /// exclusive reference to the copy, failing if the iterator returns an Err.
1760    ///
1761    /// The elements are initialized using the supplied iterator.
1762    ///
1763    /// ## Panics
1764    ///
1765    /// Panics if reserving space for the slice fails, or if the supplied
1766    /// iterator returns fewer elements than it promised.
1767    ///
1768    /// ## Examples
1769    ///
1770    /// ```
1771    /// let bump = bumpalo::Bump::new();
1772    /// let x: Result<&mut [i32], ()> = bump.alloc_slice_try_fill_iter(
1773    ///    [2, 3, 5].iter().cloned().map(|i| Ok(i * i))
1774    /// );
1775    /// assert_eq!(x, Ok(bump.alloc_slice_copy(&[4, 9, 25])));
1776    /// ```
1777    ///
1778    /// ```
1779    /// let bump = bumpalo::Bump::new();
1780    /// let x: Result<&mut [i32], ()> = bump.alloc_slice_try_fill_iter(
1781    ///    [Ok(2), Err(()), Ok(5)].iter().cloned()
1782    /// );
1783    /// assert_eq!(x, Err(()));
1784    /// ```
1785    #[inline(always)]
1786    pub fn alloc_slice_try_fill_iter<T, I, E>(&self, iter: I) -> Result<&mut [T], E>
1787    where
1788        I: IntoIterator<Item = Result<T, E>>,
1789        I::IntoIter: ExactSizeIterator,
1790    {
1791        let mut iter = iter.into_iter();
1792        self.alloc_slice_try_fill_with(iter.len(), |_| {
1793            iter.next().expect("Iterator supplied too few elements")
1794        })
1795    }
1796
1797    /// Allocates a new slice of size `iter.len()` slice into this `Bump` and return an
1798    /// exclusive reference to the copy. Does not panic on failure.
1799    ///
1800    /// The elements are initialized using the supplied iterator.
1801    ///
1802    /// ## Example
1803    ///
1804    /// ```
1805    /// let bump = bumpalo::Bump::new();
1806    /// let x: &[i32] = bump.try_alloc_slice_fill_iter([2, 3, 5]
1807    ///     .iter().cloned().map(|i| i * i)).unwrap();
1808    /// assert_eq!(x, [4, 9, 25]);
1809    /// ```
1810    #[inline(always)]
1811    pub fn try_alloc_slice_fill_iter<T, I>(&self, iter: I) -> Result<&mut [T], AllocErr>
1812    where
1813        I: IntoIterator<Item = T>,
1814        I::IntoIter: ExactSizeIterator,
1815    {
1816        let mut iter = iter.into_iter();
1817        self.try_alloc_slice_fill_with(iter.len(), |_| {
1818            iter.next().expect("Iterator supplied too few elements")
1819        })
1820    }
1821
1822    /// Allocates a new slice of size `len` slice into this `Bump` and return an
1823    /// exclusive reference to the copy.
1824    ///
1825    /// All elements of the slice are initialized to [`T::default()`].
1826    ///
1827    /// [`T::default()`]: https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default
1828    ///
1829    /// ## Panics
1830    ///
1831    /// Panics if reserving space for the slice fails.
1832    ///
1833    /// ## Example
1834    ///
1835    /// ```
1836    /// let bump = bumpalo::Bump::new();
1837    /// let x = bump.alloc_slice_fill_default::<u32>(5);
1838    /// assert_eq!(x, &[0, 0, 0, 0, 0]);
1839    /// ```
1840    #[inline(always)]
1841    pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] {
1842        self.alloc_slice_fill_with(len, |_| T::default())
1843    }
1844
1845    /// Like `alloc_slice_fill_default` but does not panic on failure.
1846    #[inline(always)]
1847    pub fn try_alloc_slice_fill_default<T: Default>(
1848        &self,
1849        len: usize,
1850    ) -> Result<&mut [T], AllocErr> {
1851        self.try_alloc_slice_fill_with(len, |_| T::default())
1852    }
1853
1854    /// Allocate space for an object with the given `Layout`.
1855    ///
1856    /// The returned pointer points at uninitialized memory, and should be
1857    /// initialized with
1858    /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
1859    ///
1860    /// # Panics
1861    ///
1862    /// Panics if reserving space matching `layout` fails.
1863    #[inline(always)]
1864    pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
1865        self.try_alloc_layout(layout).unwrap_or_else(|_| oom())
1866    }
1867
1868    /// Attempts to allocate space for an object with the given `Layout` or else returns
1869    /// an `Err`.
1870    ///
1871    /// The returned pointer points at uninitialized memory, and should be
1872    /// initialized with
1873    /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
1874    ///
1875    /// # Errors
1876    ///
1877    /// Errors if reserving space matching `layout` fails.
1878    #[inline(always)]
1879    pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
1880        if let Some(p) = self.try_alloc_layout_fast(layout) {
1881            Ok(p)
1882        } else {
1883            self.alloc_layout_slow(layout).ok_or(AllocErr)
1884        }
1885    }
1886
1887    #[inline(always)]
1888    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
1889        // We don't need to check for ZSTs here since they will automatically
1890        // be handled properly: the pointer will be bumped by zero bytes,
1891        // modulo alignment. This keeps the fast path optimized for non-ZSTs,
1892        // which are much more common.
1893        unsafe {
1894            let footer_ptr = self.current_chunk_footer.get();
1895            let footer = footer_ptr.as_ref();
1896
1897            let ptr = footer.ptr.get().as_ptr();
1898            let start = footer.data.as_ptr();
1899            debug_assert!(
1900                start <= ptr,
1901                "start pointer {start:#p} should be less than or equal to bump pointer {ptr:#p}"
1902            );
1903            debug_assert!(
1904                ptr <= footer_ptr.cast::<u8>().as_ptr(),
1905                "bump pointer {ptr:#p} should be less than or equal to footer pointer {footer_ptr:#p}"
1906            );
1907            debug_assert!(
1908                is_pointer_aligned_to(ptr, MIN_ALIGN),
1909                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
1910            );
1911
1912            // This `match` should be boiled away by LLVM: `MIN_ALIGN` is a
1913            // constant and the layout's alignment is also constant in practice
1914            // after inlining.
1915            let aligned_ptr = match layout.align().cmp(&MIN_ALIGN) {
1916                Ordering::Less => {
1917                    // We need to round the size up to a multiple of `MIN_ALIGN`
1918                    // to preserve the minimum alignment. This might overflow
1919                    // since we cannot rely on `Layout`'s guarantees.
1920                    let aligned_size = round_up_to(layout.size(), MIN_ALIGN)?;
1921
1922                    let capacity = (ptr as usize) - (start as usize);
1923                    if aligned_size > capacity {
1924                        return None;
1925                    }
1926
1927                    ptr.wrapping_sub(aligned_size)
1928                }
1929                Ordering::Equal => {
1930                    // `Layout` guarantees that rounding the size up to its
1931                    // align cannot overflow (but does not guarantee that the
1932                    // size is initially a multiple of the alignment, which is
1933                    // why we need to do this rounding).
1934                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1935
1936                    let capacity = (ptr as usize) - (start as usize);
1937                    if aligned_size > capacity {
1938                        return None;
1939                    }
1940
1941                    ptr.wrapping_sub(aligned_size)
1942                }
1943                Ordering::Greater => {
1944                    // `Layout` guarantees that rounding the size up to its
1945                    // align cannot overflow (but does not guarantee that the
1946                    // size is initially a multiple of the alignment, which is
1947                    // why we need to do this rounding).
1948                    let aligned_size = round_up_to_unchecked(layout.size(), layout.align());
1949
1950                    let aligned_ptr = round_mut_ptr_down_to(ptr, layout.align());
1951                    let capacity = (aligned_ptr as usize).wrapping_sub(start as usize);
1952                    if aligned_ptr < start || aligned_size > capacity {
1953                        return None;
1954                    }
1955
1956                    aligned_ptr.wrapping_sub(aligned_size)
1957                }
1958            };
1959
1960            debug_assert!(
1961                is_pointer_aligned_to(aligned_ptr, layout.align()),
1962                "pointer {aligned_ptr:#p} should be aligned to layout alignment of {:#}",
1963                layout.align()
1964            );
1965            debug_assert!(
1966                is_pointer_aligned_to(aligned_ptr, MIN_ALIGN),
1967                "pointer {aligned_ptr:#p} should be aligned to minimum alignment of {:#}",
1968                MIN_ALIGN
1969            );
1970            debug_assert!(
1971                start <= aligned_ptr && aligned_ptr <= ptr,
1972                "pointer {aligned_ptr:#p} should be in range {start:#p}..{ptr:#p}"
1973            );
1974
1975            debug_assert!(!aligned_ptr.is_null());
1976            let aligned_ptr = NonNull::new_unchecked(aligned_ptr);
1977
1978            footer.ptr.set(aligned_ptr);
1979            Some(aligned_ptr)
1980        }
1981    }
1982
1983    /// Gets the remaining capacity in the current chunk (in bytes).
1984    ///
1985    /// ## Example
1986    ///
1987    /// ```
1988    /// use bumpalo::Bump;
1989    ///
1990    /// let bump = Bump::with_capacity(100);
1991    ///
1992    /// let capacity = bump.chunk_capacity();
1993    /// assert!(capacity >= 100);
1994    /// ```
1995    pub fn chunk_capacity(&self) -> usize {
1996        let current_footer = self.current_chunk_footer.get();
1997        let current_footer = unsafe { current_footer.as_ref() };
1998
1999        current_footer.ptr.get().as_ptr() as usize - current_footer.data.as_ptr() as usize
2000    }
2001
2002    /// Slow path allocation for when we need to allocate a new chunk from the
2003    /// parent bump set because there isn't enough room in our current chunk.
2004    #[inline(never)]
2005    #[cold]
2006    fn alloc_layout_slow(&self, layout: Layout) -> Option<NonNull<u8>> {
2007        unsafe {
2008            let allocation_limit_remaining = self.allocation_limit_remaining();
2009
2010            // Get a new chunk from the global allocator.
2011            let current_footer = self.current_chunk_footer.get();
2012            let current_layout = current_footer.as_ref().layout;
2013
2014            // By default, we want our new chunk to be about twice as big
2015            // as the previous chunk. If the global allocator refuses it,
2016            // we try to divide it by half until it works or the requested
2017            // size is smaller than the default footer size.
2018            let min_new_chunk_size = layout.size().max(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
2019            let mut base_size = (current_layout.size() - FOOTER_SIZE)
2020                .checked_mul(2)?
2021                .max(min_new_chunk_size);
2022            let chunk_memory_details = iter::from_fn(|| {
2023                let bypass_min_chunk_size_for_small_limits = matches!(self.allocation_limit(), Some(limit) if layout.size() < limit
2024                            && base_size >= layout.size()
2025                            && limit < DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
2026                            && self.allocated_bytes() == 0);
2027
2028                if base_size >= min_new_chunk_size || bypass_min_chunk_size_for_small_limits {
2029                    let size = base_size;
2030                    base_size /= 2;
2031                    Self::new_chunk_memory_details(Some(size), layout)
2032                } else {
2033                    None
2034                }
2035            });
2036
2037            let new_footer = chunk_memory_details
2038                .filter_map(|chunk_memory_details| {
2039                    if Self::chunk_fits_under_limit(
2040                        allocation_limit_remaining,
2041                        chunk_memory_details,
2042                    ) {
2043                        Self::new_chunk(chunk_memory_details, layout, current_footer)
2044                    } else {
2045                        None
2046                    }
2047                })
2048                .next()?;
2049
2050            debug_assert_eq!(
2051                new_footer.as_ref().data.as_ptr() as usize % layout.align(),
2052                0
2053            );
2054
2055            // Set the new chunk as our new current chunk.
2056            self.current_chunk_footer.set(new_footer);
2057
2058            // And then we can rely on `tray_alloc_layout_fast` to allocate
2059            // space within this chunk.
2060            let ptr = self.try_alloc_layout_fast(layout);
2061            debug_assert!(ptr.is_some());
2062            ptr
2063        }
2064    }
2065
2066    /// Returns an iterator over each chunk of allocated memory that
2067    /// this arena has bump allocated into.
2068    ///
2069    /// The chunks are returned ordered by allocation time, with the most
2070    /// recently allocated chunk being returned first, and the least recently
2071    /// allocated chunk being returned last.
2072    ///
2073    /// The values inside each chunk are also ordered by allocation time, with
2074    /// the most recent allocation being earlier in the slice, and the least
2075    /// recent allocation being towards the end of the slice.
2076    ///
2077    /// ## Safety
2078    ///
2079    /// Because this method takes `&mut self`, we know that the bump arena
2080    /// reference is unique and therefore there aren't any active references to
2081    /// any of the objects we've allocated in it either. This potential aliasing
2082    /// of exclusive references is one common footgun for unsafe code that we
2083    /// don't need to worry about here.
2084    ///
2085    /// However, there could be regions of uninitialized memory used as padding
2086    /// between allocations, which is why this iterator has items of type
2087    /// `[MaybeUninit<u8>]`, instead of simply `[u8]`.
2088    ///
2089    /// The only way to guarantee that there is no padding between allocations
2090    /// or within allocated objects is if all of these properties hold:
2091    ///
2092    /// 1. Every object allocated in this arena has the same alignment,
2093    ///    and that alignment is at most 16.
2094    /// 2. Every object's size is a multiple of its alignment.
2095    /// 3. None of the objects allocated in this arena contain any internal
2096    ///    padding.
2097    ///
2098    /// If you want to use this `iter_allocated_chunks` method, it is *your*
2099    /// responsibility to ensure that these properties hold before calling
2100    /// `MaybeUninit::assume_init` or otherwise reading the returned values.
2101    ///
2102    /// Finally, you must also ensure that any values allocated into the bump
2103    /// arena have not had their `Drop` implementations called on them,
2104    /// e.g. after dropping a [`bumpalo::boxed::Box<T>`][crate::boxed::Box].
2105    ///
2106    /// ## Example
2107    ///
2108    /// ```
2109    /// let mut bump = bumpalo::Bump::new();
2110    ///
2111    /// // Allocate a bunch of `i32`s in this bump arena, potentially causing
2112    /// // additional memory chunks to be reserved.
2113    /// for i in 0..10000 {
2114    ///     bump.alloc(i);
2115    /// }
2116    ///
2117    /// // Iterate over each chunk we've bump allocated into. This is safe
2118    /// // because we have only allocated `i32`s in this arena, which fulfills
2119    /// // the above requirements.
2120    /// for ch in bump.iter_allocated_chunks() {
2121    ///     println!("Used a chunk that is {} bytes long", ch.len());
2122    ///     println!("The first byte is {:?}", unsafe {
2123    ///         ch[0].assume_init()
2124    ///     });
2125    /// }
2126    ///
2127    /// // Within a chunk, allocations are ordered from most recent to least
2128    /// // recent. If we allocated 'a', then 'b', then 'c', when we iterate
2129    /// // through the chunk's data, we get them in the order 'c', then 'b',
2130    /// // then 'a'.
2131    ///
2132    /// bump.reset();
2133    /// bump.alloc(b'a');
2134    /// bump.alloc(b'b');
2135    /// bump.alloc(b'c');
2136    ///
2137    /// assert_eq!(bump.iter_allocated_chunks().count(), 1);
2138    /// let chunk = bump.iter_allocated_chunks().nth(0).unwrap();
2139    /// assert_eq!(chunk.len(), 3);
2140    ///
2141    /// // Safe because we've only allocated `u8`s in this arena, which
2142    /// // fulfills the above requirements.
2143    /// unsafe {
2144    ///     assert_eq!(chunk[0].assume_init(), b'c');
2145    ///     assert_eq!(chunk[1].assume_init(), b'b');
2146    ///     assert_eq!(chunk[2].assume_init(), b'a');
2147    /// }
2148    /// ```
2149    pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_, MIN_ALIGN> {
2150        // Safety: Ensured by mutable borrow of `self`.
2151        let raw = unsafe { self.iter_allocated_chunks_raw() };
2152        ChunkIter {
2153            raw,
2154            bump: PhantomData,
2155        }
2156    }
2157
2158    /// Returns an iterator over raw pointers to chunks of allocated memory that
2159    /// this arena has bump allocated into.
2160    ///
2161    /// This is an unsafe version of [`iter_allocated_chunks()`](Bump::iter_allocated_chunks),
2162    /// with the caller responsible for safe usage of the returned pointers as
2163    /// well as ensuring that the iterator is not invalidated by new
2164    /// allocations.
2165    ///
2166    /// ## Safety
2167    ///
2168    /// Allocations from this arena must not be performed while the returned
2169    /// iterator is alive. If reading the chunk data (or casting to a reference)
2170    /// the caller must ensure that there exist no mutable references to
2171    /// previously allocated data.
2172    ///
2173    /// In addition, all of the caveats when reading the chunk data from
2174    /// [`iter_allocated_chunks()`](Bump::iter_allocated_chunks) still apply.
2175    pub unsafe fn iter_allocated_chunks_raw(&self) -> ChunkRawIter<'_, MIN_ALIGN> {
2176        ChunkRawIter {
2177            footer: self.current_chunk_footer.get(),
2178            bump: PhantomData,
2179        }
2180    }
2181
2182    /// Calculates the number of bytes currently allocated across all chunks in
2183    /// this bump arena.
2184    ///
2185    /// If you allocate types of different alignments or types with
2186    /// larger-than-typical alignment in the same arena, some padding
2187    /// bytes might get allocated in the bump arena. Note that those padding
2188    /// bytes will add to this method's resulting sum, so you cannot rely
2189    /// on it only counting the sum of the sizes of the things
2190    /// you've allocated in the arena.
2191    ///
2192    /// The allocated bytes do not include the size of bumpalo's metadata,
2193    /// so the amount of memory requested from the Rust allocator is higher
2194    /// than the returned value.
2195    ///
2196    /// ## Example
2197    ///
2198    /// ```
2199    /// let bump = bumpalo::Bump::new();
2200    /// let _x = bump.alloc_slice_fill_default::<u32>(5);
2201    /// let bytes = bump.allocated_bytes();
2202    /// assert!(bytes >= core::mem::size_of::<u32>() * 5);
2203    /// ```
2204    pub fn allocated_bytes(&self) -> usize {
2205        let footer = self.current_chunk_footer.get();
2206
2207        unsafe { footer.as_ref().allocated_bytes }
2208    }
2209
2210    /// Calculates the number of bytes requested from the Rust allocator for this `Bump`.
2211    ///
2212    /// This number is equal to the [`allocated_bytes()`](Self::allocated_bytes) plus
2213    /// the size of the bump metadata.
2214    pub fn allocated_bytes_including_metadata(&self) -> usize {
2215        let metadata_size =
2216            unsafe { self.iter_allocated_chunks_raw().count() * mem::size_of::<ChunkFooter>() };
2217        self.allocated_bytes() + metadata_size
2218    }
2219
2220    #[inline]
2221    unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
2222        let footer = self.current_chunk_footer.get();
2223        let footer = footer.as_ref();
2224        footer.ptr.get() == ptr
2225    }
2226
2227    #[inline]
2228    unsafe fn dealloc(&self, ptr: NonNull<u8>, layout: Layout) {
2229        // If the pointer is the last allocation we made, we can reuse the bytes,
2230        // otherwise they are simply leaked -- at least until somebody calls reset().
2231        if self.is_last_allocation(ptr) {
2232            let ptr = self.current_chunk_footer.get().as_ref().ptr.get();
2233            let ptr = ptr.as_ptr().add(layout.size());
2234
2235            let ptr = round_mut_ptr_up_to_unchecked(ptr, MIN_ALIGN);
2236            debug_assert!(
2237                is_pointer_aligned_to(ptr, MIN_ALIGN),
2238                "bump pointer {ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
2239            );
2240            let ptr = NonNull::new_unchecked(ptr);
2241            self.current_chunk_footer.get().as_ref().ptr.set(ptr);
2242        }
2243    }
2244
2245    #[inline]
2246    unsafe fn shrink(
2247        &self,
2248        ptr: NonNull<u8>,
2249        old_layout: Layout,
2250        new_layout: Layout,
2251    ) -> Result<NonNull<u8>, AllocErr> {
2252        // If the new layout demands greater alignment than the old layout has,
2253        // then either
2254        //
2255        // 1. the pointer happens to satisfy the new layout's alignment, so we
2256        //    got lucky and can return the pointer as-is, or
2257        //
2258        // 2. the pointer is not aligned to the new layout's demanded alignment,
2259        //    and we are unlucky.
2260        //
2261        // In the case of (2), to successfully "shrink" the allocation, we have
2262        // to allocate a whole new region for the new layout.
2263        if old_layout.align() < new_layout.align() {
2264            return if is_pointer_aligned_to(ptr.as_ptr(), new_layout.align()) {
2265                Ok(ptr)
2266            } else {
2267                let new_ptr = self.try_alloc_layout(new_layout)?;
2268
2269                // We know that these regions are nonoverlapping because
2270                // `new_ptr` is a fresh allocation.
2271                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_layout.size());
2272
2273                Ok(new_ptr)
2274            };
2275        }
2276
2277        debug_assert!(is_pointer_aligned_to(ptr.as_ptr(), new_layout.align()));
2278
2279        let old_size = old_layout.size();
2280        let new_size = new_layout.size();
2281
2282        // This is how much space we would *actually* reclaim while satisfying
2283        // the requested alignment.
2284        let delta = round_down_to(old_size - new_size, new_layout.align().max(MIN_ALIGN));
2285
2286        if self.is_last_allocation(ptr)
2287                // Only reclaim the excess space (which requires a copy) if it
2288                // is worth it: we are actually going to recover "enough" space
2289                // and we can do a non-overlapping copy.
2290                //
2291                // We do `(old_size + 1) / 2` so division rounds up rather than
2292                // down. Consider when:
2293                //
2294                //     old_size = 5
2295                //     new_size = 3
2296                //
2297                // If we do not take care to round up, this will result in:
2298                //
2299                //     delta = 2
2300                //     (old_size / 2) = (5 / 2) = 2
2301                //
2302                // And the the check will succeed even though we are have
2303                // overlapping ranges:
2304                //
2305                //     |--------old-allocation-------|
2306                //     |------from-------|
2307                //                 |-------to--------|
2308                //     +-----+-----+-----+-----+-----+
2309                //     |  a  |  b  |  c  |  .  |  .  |
2310                //     +-----+-----+-----+-----+-----+
2311                //
2312                // But we MUST NOT have overlapping ranges because we use
2313                // `copy_nonoverlapping` below! Therefore, we round the division
2314                // up to avoid this issue.
2315                && delta >= (old_size + 1) / 2
2316        {
2317            let footer = self.current_chunk_footer.get();
2318            let footer = footer.as_ref();
2319
2320            // NB: new_ptr is aligned, because ptr *has to* be aligned, and we
2321            // made sure delta is aligned.
2322            let new_ptr = NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta));
2323            debug_assert!(
2324                is_pointer_aligned_to(new_ptr.as_ptr(), MIN_ALIGN),
2325                "bump pointer {new_ptr:#p} should be aligned to the minimum alignment of {MIN_ALIGN:#x}"
2326            );
2327            footer.ptr.set(new_ptr);
2328
2329            // NB: we know it is non-overlapping because of the size check
2330            // in the `if` condition.
2331            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
2332
2333            return Ok(new_ptr);
2334        }
2335
2336        // If this wasn't the last allocation, or shrinking wasn't worth it,
2337        // simply return the old pointer as-is.
2338        Ok(ptr)
2339    }
2340
2341    #[inline]
2342    unsafe fn grow(
2343        &self,
2344        ptr: NonNull<u8>,
2345        old_layout: Layout,
2346        new_layout: Layout,
2347    ) -> Result<NonNull<u8>, AllocErr> {
2348        let old_size = old_layout.size();
2349
2350        let new_size = new_layout.size();
2351        let new_size = round_up_to(new_size, MIN_ALIGN).ok_or(AllocErr)?;
2352
2353        let align_is_compatible = old_layout.align() >= new_layout.align();
2354
2355        if align_is_compatible && self.is_last_allocation(ptr) {
2356            // Try to allocate the delta size within this same block so we can
2357            // reuse the currently allocated space.
2358            let delta = new_size - old_size;
2359            if let Some(p) =
2360                self.try_alloc_layout_fast(layout_from_size_align(delta, old_layout.align())?)
2361            {
2362                ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size);
2363                return Ok(p);
2364            }
2365        }
2366
2367        // Fallback: do a fresh allocation and copy the existing data into it.
2368        let new_ptr = self.try_alloc_layout(new_layout)?;
2369        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
2370        Ok(new_ptr)
2371    }
2372}
2373
2374/// An iterator over each chunk of allocated memory that
2375/// an arena has bump allocated into.
2376///
2377/// The chunks are returned ordered by allocation time, with the most recently
2378/// allocated chunk being returned first.
2379///
2380/// The values inside each chunk are also ordered by allocation time, with the most
2381/// recent allocation being earlier in the slice.
2382///
2383/// This struct is created by the [`iter_allocated_chunks`] method on
2384/// [`Bump`]. See that function for a safety description regarding reading from the returned items.
2385///
2386/// [`Bump`]: struct.Bump.html
2387/// [`iter_allocated_chunks`]: struct.Bump.html#method.iter_allocated_chunks
2388#[derive(Debug)]
2389pub struct ChunkIter<'a, const MIN_ALIGN: usize = 1> {
2390    raw: ChunkRawIter<'a, MIN_ALIGN>,
2391    bump: PhantomData<&'a mut Bump>,
2392}
2393
2394impl<'a, const MIN_ALIGN: usize> Iterator for ChunkIter<'a, MIN_ALIGN> {
2395    type Item = &'a [mem::MaybeUninit<u8>];
2396
2397    fn next(&mut self) -> Option<Self::Item> {
2398        unsafe {
2399            let (ptr, len) = self.raw.next()?;
2400            let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len);
2401            Some(slice)
2402        }
2403    }
2404}
2405
2406impl<'a, const MIN_ALIGN: usize> iter::FusedIterator for ChunkIter<'a, MIN_ALIGN> {}
2407
2408/// An iterator over raw pointers to chunks of allocated memory that this
2409/// arena has bump allocated into.
2410///
2411/// See [`ChunkIter`] for details regarding the returned chunks.
2412///
2413/// This struct is created by the [`iter_allocated_chunks_raw`] method on
2414/// [`Bump`]. See that function for a safety description regarding reading from
2415/// the returned items.
2416///
2417/// [`Bump`]: struct.Bump.html
2418/// [`iter_allocated_chunks_raw`]: struct.Bump.html#method.iter_allocated_chunks_raw
2419#[derive(Debug)]
2420pub struct ChunkRawIter<'a, const MIN_ALIGN: usize = 1> {
2421    footer: NonNull<ChunkFooter>,
2422    bump: PhantomData<&'a Bump<MIN_ALIGN>>,
2423}
2424
2425impl<const MIN_ALIGN: usize> Iterator for ChunkRawIter<'_, MIN_ALIGN> {
2426    type Item = (*mut u8, usize);
2427    fn next(&mut self) -> Option<(*mut u8, usize)> {
2428        unsafe {
2429            let foot = self.footer.as_ref();
2430            if foot.is_empty() {
2431                return None;
2432            }
2433            let (ptr, len) = foot.as_raw_parts();
2434            self.footer = foot.prev.get();
2435            Some((ptr as *mut u8, len))
2436        }
2437    }
2438}
2439
2440impl<const MIN_ALIGN: usize> iter::FusedIterator for ChunkRawIter<'_, MIN_ALIGN> {}
2441
2442#[inline(never)]
2443#[cold]
2444fn oom() -> ! {
2445    panic!("out of memory")
2446}
2447
2448unsafe impl<'a, const MIN_ALIGN: usize> alloc::Alloc for &'a Bump<MIN_ALIGN> {
2449    #[inline(always)]
2450    unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> {
2451        self.try_alloc_layout(layout)
2452    }
2453
2454    #[inline]
2455    unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
2456        Bump::<MIN_ALIGN>::dealloc(self, ptr, layout);
2457    }
2458
2459    #[inline]
2460    unsafe fn realloc(
2461        &mut self,
2462        ptr: NonNull<u8>,
2463        layout: Layout,
2464        new_size: usize,
2465    ) -> Result<NonNull<u8>, AllocErr> {
2466        let old_size = layout.size();
2467
2468        if old_size == 0 {
2469            return self.try_alloc_layout(layout);
2470        }
2471
2472        let new_layout = layout_from_size_align(new_size, layout.align())?;
2473        if new_size <= old_size {
2474            self.shrink(ptr, layout, new_layout)
2475        } else {
2476            self.grow(ptr, layout, new_layout)
2477        }
2478    }
2479}
2480
2481#[cfg(any(feature = "allocator_api", feature = "allocator-api2"))]
2482unsafe impl<'a, const MIN_ALIGN: usize> Allocator for &'a Bump<MIN_ALIGN> {
2483    #[inline]
2484    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
2485        self.try_alloc_layout(layout)
2486            .map(|p| unsafe {
2487                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), layout.size()))
2488            })
2489            .map_err(|_| AllocError)
2490    }
2491
2492    #[inline]
2493    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
2494        Bump::<MIN_ALIGN>::dealloc(self, ptr, layout)
2495    }
2496
2497    #[inline]
2498    unsafe fn shrink(
2499        &self,
2500        ptr: NonNull<u8>,
2501        old_layout: Layout,
2502        new_layout: Layout,
2503    ) -> Result<NonNull<[u8]>, AllocError> {
2504        Bump::<MIN_ALIGN>::shrink(self, ptr, old_layout, new_layout)
2505            .map(|p| unsafe {
2506                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2507            })
2508            .map_err(|_| AllocError)
2509    }
2510
2511    #[inline]
2512    unsafe fn grow(
2513        &self,
2514        ptr: NonNull<u8>,
2515        old_layout: Layout,
2516        new_layout: Layout,
2517    ) -> Result<NonNull<[u8]>, AllocError> {
2518        Bump::<MIN_ALIGN>::grow(self, ptr, old_layout, new_layout)
2519            .map(|p| unsafe {
2520                NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size()))
2521            })
2522            .map_err(|_| AllocError)
2523    }
2524
2525    #[inline]
2526    unsafe fn grow_zeroed(
2527        &self,
2528        ptr: NonNull<u8>,
2529        old_layout: Layout,
2530        new_layout: Layout,
2531    ) -> Result<NonNull<[u8]>, AllocError> {
2532        let mut ptr = self.grow(ptr, old_layout, new_layout)?;
2533        ptr.as_mut()[old_layout.size()..].fill(0);
2534        Ok(ptr)
2535    }
2536}
2537
2538// NB: Only tests which require private types, fields, or methods should be in
2539// here. Anything that can just be tested via public API surface should be in
2540// `bumpalo/tests/all/*`.
2541#[cfg(test)]
2542mod tests {
2543    use super::*;
2544
2545    // Uses private type `ChunkFooter`.
2546    #[test]
2547    fn chunk_footer_is_five_words() {
2548        assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 6);
2549    }
2550
2551    // Uses private `DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER` and `FOOTER_SIZE`.
2552    #[test]
2553    fn allocated_bytes() {
2554        let mut b = Bump::with_capacity(1);
2555
2556        assert_eq!(b.allocated_bytes(), DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
2557        assert_eq!(
2558            b.allocated_bytes_including_metadata(),
2559            DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER + FOOTER_SIZE
2560        );
2561
2562        b.reset();
2563
2564        assert_eq!(b.allocated_bytes(), DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
2565        assert_eq!(
2566            b.allocated_bytes_including_metadata(),
2567            DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER + FOOTER_SIZE
2568        );
2569    }
2570
2571    // Uses private `alloc` module.
2572    #[test]
2573    fn test_realloc() {
2574        use crate::alloc::Alloc;
2575
2576        unsafe {
2577            const CAPACITY: usize = DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER;
2578            let mut b = Bump::<1>::with_min_align_and_capacity(CAPACITY);
2579
2580            // `realloc` doesn't shrink allocations that aren't "worth it".
2581            let layout = Layout::from_size_align(100, 1).unwrap();
2582            let p = b.alloc_layout(layout);
2583            let q = (&b).realloc(p, layout, 51).unwrap();
2584            assert_eq!(p, q);
2585            b.reset();
2586
2587            // `realloc` will shrink allocations that are "worth it".
2588            let layout = Layout::from_size_align(100, 1).unwrap();
2589            let p = b.alloc_layout(layout);
2590            let q = (&b).realloc(p, layout, 50).unwrap();
2591            assert!(p != q);
2592            b.reset();
2593
2594            // `realloc` will reuse the last allocation when growing.
2595            let layout = Layout::from_size_align(10, 1).unwrap();
2596            let p = b.alloc_layout(layout);
2597            let q = (&b).realloc(p, layout, 11).unwrap();
2598            assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1);
2599            b.reset();
2600
2601            // `realloc` will allocate a new chunk when growing the last
2602            // allocation, if need be.
2603            let layout = Layout::from_size_align(1, 1).unwrap();
2604            let p = b.alloc_layout(layout);
2605            let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap();
2606            assert_ne!(q.as_ptr() as usize, p.as_ptr() as usize - CAPACITY);
2607            b.reset();
2608
2609            // `realloc` will allocate and copy when reallocating anything that
2610            // wasn't the last allocation.
2611            let layout = Layout::from_size_align(1, 1).unwrap();
2612            let p = b.alloc_layout(layout);
2613            let _ = b.alloc_layout(layout);
2614            let q = (&b).realloc(p, layout, 2).unwrap();
2615            assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1);
2616            b.reset();
2617        }
2618    }
2619
2620    // Uses our private `alloc` module.
2621    #[test]
2622    fn invalid_read() {
2623        use alloc::Alloc;
2624
2625        let mut b = &Bump::new();
2626
2627        unsafe {
2628            let l1 = Layout::from_size_align(12000, 4).unwrap();
2629            let p1 = Alloc::alloc(&mut b, l1).unwrap();
2630
2631            let l2 = Layout::from_size_align(1000, 4).unwrap();
2632            Alloc::alloc(&mut b, l2).unwrap();
2633
2634            let p1 = b.realloc(p1, l1, 24000).unwrap();
2635            let l3 = Layout::from_size_align(24000, 4).unwrap();
2636            b.realloc(p1, l3, 48000).unwrap();
2637        }
2638    }
2639}