diesel/
serialize.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! Types and traits related to serializing values for the database

use std::error::Error;
use std::fmt;
use std::io::{self, Write};
use std::result;

use crate::backend::Backend;
use crate::query_builder::bind_collector::RawBytesBindCollector;
use crate::query_builder::BindCollector;

#[doc(inline)]
#[cfg(feature = "postgres_backend")]
pub use crate::pg::serialize::WriteTuple;

/// A specialized result type representing the result of serializing
/// a value for the database.
pub type Result = result::Result<IsNull, Box<dyn Error + Send + Sync>>;

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// Tiny enum to make the return type of `ToSql` more descriptive
pub enum IsNull {
    /// No data was written, as this type is null
    Yes,
    /// The value is not null
    ///
    /// This does not necessarily mean that any data was written to the buffer.
    /// For example, an empty string has no data to be sent over the wire, but
    /// also is not null.
    No,
}

/// Wraps a buffer to be written by `ToSql` with additional backend specific
/// utilities.
pub struct Output<'a, 'b, DB>
where
    DB: Backend,
    DB::MetadataLookup: 'a,
{
    out: <DB::BindCollector<'a> as BindCollector<'a, DB>>::Buffer,
    metadata_lookup: Option<&'b mut DB::MetadataLookup>,
}

impl<'a, 'b, DB: Backend> Output<'a, 'b, DB> {
    /// Construct a new `Output`
    pub fn new(
        out: <DB::BindCollector<'a> as BindCollector<'a, DB>>::Buffer,
        metadata_lookup: &'b mut DB::MetadataLookup,
    ) -> Self {
        Output {
            out,
            metadata_lookup: Some(metadata_lookup),
        }
    }

    /// Consume the current `Output` structure to access the inner buffer type
    ///
    /// This function is only useful for people implementing their own Backend.
    pub fn into_inner(self) -> <DB::BindCollector<'a> as BindCollector<'a, DB>>::Buffer {
        self.out
    }

    /// Returns the backend's mechanism for dynamically looking up type
    /// metadata at runtime, if relevant for the given backend.
    pub fn metadata_lookup(&mut self) -> &mut DB::MetadataLookup {
        self.metadata_lookup.as_mut().expect("Lookup is there")
    }

    /// Set the inner buffer to a specific value
    ///
    /// Checkout the documentation of the type of `BindCollector::Buffer`
    /// for your specific backend for supported types.
    pub fn set_value<V>(&mut self, value: V)
    where
        V: Into<<DB::BindCollector<'a> as BindCollector<'a, DB>>::Buffer>,
    {
        self.out = value.into();
    }
}

#[cfg(test)]
impl<'a, DB: Backend> Output<'a, 'static, DB> {
    /// Returns a `Output` suitable for testing `ToSql` implementations.
    /// Unsafe to use for testing types which perform dynamic metadata lookup.
    pub fn test(buffer: <DB::BindCollector<'a> as BindCollector<'a, DB>>::Buffer) -> Self {
        Self {
            out: buffer,
            metadata_lookup: None,
        }
    }
}

impl<DB> Write for Output<'_, '_, DB>
where
    for<'c> DB: Backend<BindCollector<'c> = RawBytesBindCollector<DB>>,
{
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.out.0.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.out.0.flush()
    }

    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        self.out.0.write_all(buf)
    }

    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
        self.out.0.write_fmt(fmt)
    }
}

impl<'a, DB> Output<'a, '_, DB>
where
    for<'c> DB: Backend<BindCollector<'c> = RawBytesBindCollector<DB>>,
{
    /// Call this method whenever you pass an instance of `Output<DB>` by value.
    ///
    /// Effectively copies `self`, with a narrower lifetime. When passing a
    /// reference or a mutable reference, this is normally done by rust
    /// implicitly. This is why you can pass `&mut Foo` to multiple functions,
    /// even though mutable references are not `Copy`. However, this is only
    /// done implicitly for references. For structs with lifetimes it must be
    /// done explicitly. This method matches the semantics of what Rust would do
    /// implicitly if you were passing a mutable reference
    pub fn reborrow<'c>(&'c mut self) -> Output<'c, 'c, DB>
    where
        'a: 'c,
    {
        Output {
            out: RawBytesBindCollector::<DB>::reborrow_buffer(&mut self.out),
            metadata_lookup: match &mut self.metadata_lookup {
                None => None,
                Some(m) => Some(&mut **m),
            },
        }
    }
}

impl<'a, DB> fmt::Debug for Output<'a, '_, DB>
where
    <DB::BindCollector<'a> as BindCollector<'a, DB>>::Buffer: fmt::Debug,
    DB: Backend,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.out.fmt(f)
    }
}

/// Serializes a single value to be sent to the database.
///
/// The output is sent as a bind parameter, and the data must be written in the
/// expected format for the given backend.
///
/// When possible, implementations of this trait should prefer using an existing
/// implementation, rather than writing to `out` directly. (For example, if you
/// are implementing this for an enum, which is represented as an integer in the
/// database, you should use `i32::to_sql(x, out)` instead of writing to `out`
/// yourself.)
///
/// Any types which implement this trait should also
/// [`#[derive(AsExpression)]`](derive@crate::expression::AsExpression).
///
/// ### Backend specific details
///
/// - For PostgreSQL, the bytes will be sent using the binary protocol, not text.
/// - For SQLite, all implementations should be written in terms of an existing
///   `ToSql` implementation.
/// - For MySQL, the expected bytes will depend on the return value of
///   `type_metadata` for the given SQL type. See [`MysqlType`] for details.
/// - For third party backends, consult that backend's documentation.
///
/// [`MysqlType`]: ../mysql/enum.MysqlType.html
///
/// ### Examples
///
/// Most implementations of this trait will be defined in terms of an existing
/// implementation.
///
/// ```rust
/// # use diesel::backend::Backend;
/// # use diesel::expression::AsExpression;
/// # use diesel::sql_types::*;
/// # use diesel::serialize::{self, ToSql, Output};
/// # use std::io::Write;
/// #
/// #[repr(i32)]
/// #[derive(Debug, Clone, Copy, AsExpression)]
/// #[diesel(sql_type = Integer)]
/// pub enum MyEnum {
///     A = 1,
///     B = 2,
/// }
///
/// impl<DB> ToSql<Integer, DB> for MyEnum
/// where
///     DB: Backend,
///     i32: ToSql<Integer, DB>,
/// {
///     fn to_sql<'b>(&'b self, out: &mut Output<'b, '_, DB>) -> serialize::Result {
///         match self {
///             MyEnum::A => 1.to_sql(out),
///             MyEnum::B => 2.to_sql(out),
///         }
///     }
/// }
/// ```
///
/// Example of creating a custom type mapping based on a MySQL [enum type](https://dev.mysql.com/doc/refman/8.0/en/enum.html)
///
/// This is designed to reuse the SQL type definition generated by diesel-cli
///
/// ```rust
/// # use diesel::backend::Backend;
/// # use diesel::expression::AsExpression;
/// # use diesel::sql_types::*;
/// # use diesel::serialize::{self, ToSql, Output, IsNull};
/// # use std::io::Write;
/// #
/// pub mod sql_types {
///    #[derive(diesel::sql_types::SqlType)]
///    #[diesel(mysql_type(name = "Enum"))]
///    pub struct PostEnum; //<- generated by diesel cli
/// }
/// #[derive(Debug, AsExpression, PartialEq, Clone)]
/// #[diesel(sql_type = sql_types::PostEnum)]
/// pub enum Post {
///    FirstValue,
///    SecondValue,
/// }
///
/// # #[cfg(feature = "mysql")]
/// impl ToSql<sql_types::PostEnum, diesel::mysql::Mysql> for Post {
///    fn to_sql<'b>(&'b self, out: &mut Output<'b, '_, diesel::mysql::Mysql>) -> serialize::Result {
///        match *self {
///            // these string values need to match the labels used in your
///            // enum definition in SQL. So this expects that you defined the
///            /// relevant enum type as`ENUM('one', 'two')` in your `CREATE TABLE` statement
///            Post::FirstValue => out.write_all(b"one")?,
///            Post::SecondValue => out.write_all(b"two")?,
///        }
///        Ok(IsNull::No)
///    }
/// }
/// ```
///
/// Using temporary values as part of the `ToSql` implementation requires additional
/// work.
///
/// Backends using [`RawBytesBindCollector`] as [`BindCollector`] copy the serialized values as part
/// of `Write` implementation. This includes the `Mysql` and the `Pg` backend provided by diesel.
/// This means existing `ToSql` implementations can be used even with
/// temporary values. For these it is required to call
/// [`Output::reborrow`] to shorten the lifetime of the `Output` type correspondingly.
///
/// ```
/// # use diesel::backend::Backend;
/// # use diesel::expression::AsExpression;
/// # use diesel::sql_types::*;
/// # use diesel::serialize::{self, ToSql, Output};
/// # use std::io::Write;
/// #
/// #[repr(i32)]
/// #[derive(Debug, Clone, Copy, AsExpression)]
/// #[diesel(sql_type = Integer)]
/// pub enum MyEnum {
///     A = 1,
///     B = 2,
/// }
///
/// # #[cfg(feature = "postgres")]
/// impl ToSql<Integer, diesel::pg::Pg> for MyEnum
/// where
///     i32: ToSql<Integer, diesel::pg::Pg>,
/// {
///     fn to_sql<'b>(&'b self, out: &mut Output<'b, '_, diesel::pg::Pg>) -> serialize::Result {
///         let v = *self as i32;
///         <i32 as ToSql<Integer, diesel::pg::Pg>>::to_sql(&v, &mut out.reborrow())
///     }
/// }
/// ````
///
/// For any other backend the [`Output::set_value`] method provides a way to
/// set the output value directly. Checkout the documentation of the corresponding
/// `BindCollector::Buffer` type for provided `From<T>` implementations for a list
/// of accepted types. For the `Sqlite` backend see `SqliteBindValue`.
///
/// ```
/// # use diesel::backend::Backend;
/// # use diesel::expression::AsExpression;
/// # use diesel::sql_types::*;
/// # use diesel::serialize::{self, ToSql, Output, IsNull};
/// # use std::io::Write;
/// #
/// #[repr(i32)]
/// #[derive(Debug, Clone, Copy, AsExpression)]
/// #[diesel(sql_type = Integer)]
/// pub enum MyEnum {
///     A = 1,
///     B = 2,
/// }
///
/// # #[cfg(feature = "sqlite")]
/// impl ToSql<Integer, diesel::sqlite::Sqlite> for MyEnum
/// where
///     i32: ToSql<Integer, diesel::sqlite::Sqlite>,
/// {
///     fn to_sql<'b>(&'b self, out: &mut Output<'b, '_, diesel::sqlite::Sqlite>) -> serialize::Result {
///         out.set_value(*self as i32);
///         Ok(IsNull::No)
///     }
/// }
/// ````
pub trait ToSql<A, DB: Backend>: fmt::Debug {
    /// See the trait documentation.
    fn to_sql<'b>(&'b self, out: &mut Output<'b, '_, DB>) -> Result;
}

impl<A, T, DB> ToSql<A, DB> for &T
where
    DB: Backend,
    T: ToSql<A, DB> + ?Sized,
{
    fn to_sql<'b>(&'b self, out: &mut Output<'b, '_, DB>) -> Result {
        (*self).to_sql(out)
    }
}