bigdecimal/arithmetic/
sqrt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//! square root implementation

use crate::*;


pub(crate) fn impl_sqrt(n: &BigUint, scale: i64, ctx: &Context) -> BigDecimal {
    // Calculate the number of digits and the difference compared to the scale
    let num_digits = count_decimal_digits_uint(n);
    let scale_diff = BigInt::from(num_digits) - scale;

    // Calculate the number of wanted digits and the exponent we need to raise the original value to
    // We want twice as many digits as the precision because sqrt halves the number of digits
    // We add an extra one for rounding purposes
    let prec = ctx.precision().get();
    let extra_rounding_digit_count = 5;
    let wanted_digits = 2 * (prec + extra_rounding_digit_count);
    let exponent = wanted_digits.saturating_sub(num_digits) + u64::from(scale_diff.is_odd());
    let sqrt_digits = (n * ten_to_the_uint(exponent)).sqrt();

    // Calculate the scale of the result
    let result_scale_digits = 2 * (2 * prec - scale_diff) - 1;
    let result_scale_decimal: BigDecimal = BigDecimal::new(result_scale_digits, 0) / 4.0;
    let mut result_scale = result_scale_decimal.with_scale_round(0, RoundingMode::HalfEven).int_val;

    // Round the value so it has the correct precision requested
    result_scale += count_decimal_digits_uint(&sqrt_digits).saturating_sub(prec);
    let unrounded_result = BigDecimal::new(sqrt_digits.into(), result_scale.to_i64().unwrap());
    unrounded_result.with_precision_round(ctx.precision(), ctx.rounding_mode())
}

#[cfg(test)]
mod test {
    use super::*;

    macro_rules! impl_case {
        ($name:ident; $input:literal => $expected:literal) => {
            #[test]
            fn $name() {
                let n: BigDecimal = $input.parse().unwrap();
                let value = n.sqrt().unwrap();

                let expected = $expected.parse().unwrap();
                assert_eq!(value, expected);
                // assert_eq!(value.scale, expected.scale);
            }
        };
        ($name:ident; prec=$prec:literal; round=$round:ident; $input:literal => $expected:literal) => {
            #[test]
            fn $name() {
                let ctx = Context::default()
                                .with_prec($prec).unwrap()
                                .with_rounding_mode(RoundingMode::$round);
                let n: BigDecimal = $input.parse().unwrap();
                let value = n.sqrt_with_context(&ctx).unwrap();

                let expected = $expected.parse().unwrap();
                assert_eq!(value, expected);
                // assert_eq!(value.scale, expected.scale);
            }
        };
    }

    impl_case!(case_0d000; "0.000" => "0");
    impl_case!(case_1en232; "1e-232" => "1e-116");
    impl_case!(case_1d00; "1.00" => "1.00");
    impl_case!(case_1d001; "1.001" => "1.000499875062460964823258287700109753027590031219780479551442971840836093890879944856933288426795152");
    impl_case!(case_100d0; "100" => "10.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000");
    impl_case!(case_49; "49" => "7.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000");
    impl_case!(case_d25; ".25" => ".5");
    impl_case!(case_0d0152399025; "0.0152399025" => ".12345");
    impl_case!(case_0d00400; "0.00400" => "0.06324555320336758663997787088865437067439110278650433653715009705585188877278476442688496216758600590");
    impl_case!(case_0d1; "0.1" => "0.3162277660168379331998893544432718533719555139325216826857504852792594438639238221344248108379300295");
    impl_case!(case_152399025; "152399025" => "12345");
    impl_case!(case_2; "2" => "1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573");
    impl_case!(case_125348; "125348" => "354.0451948551201563108487193176101314241016013304294520812832530590100407318465590778759640828114535");
    impl_case!(case_121d000242000121; "121.000242000121000000" => "11.000011000");
    impl_case!(case_0d01234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901; "0.01234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901234567901" => "0.1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111");
    impl_case!(case_2e70; "2e70" => "141421356237309504880168872420969807.8569671875376948073176679737990732478462107038850387534327641573");
    impl_case!(case_8d9793115997963468544185161590576171875en11; "8.9793115997963468544185161590576171875e-11" => "0.000009475922962855041517561783740144225422359796851494316346796373337470068631250135521161989831460407155");
    impl_case!(case_18446744073709551616d1099511; "18446744073709551616.1099511" => "4294967296.000000000012799992691725492477397918722952224079252026972356303360555051219312462698703293");

    impl_case!(case_3d1415926; "3.141592653589793115997963468544185161590576171875" => "1.772453850905515992751519103139248439290428205003682302442979619028063165921408635567477284443197875");
    impl_case!(case_0d71777001; "0.7177700109762963922745342343167413624881759290454997218753321040760896053150388903350654937434826216803814031987652326749140535150336357405672040727695124057298138872112244784753994931999476811850580200000000000000000000000000000000" => "0.8472130847527653667042980517799020703921106560594525833177762276594388966885185567535692987624493813");
    impl_case!(case_0d110889ddd444; "0.1108890000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000444" => "0.3330000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000667");

    impl_case!(case_3e170; "3e170" => "17320508075688772935274463415058723669428052538103806280558069794519330169088000370811.46186757248576");
    impl_case!(case_9e199; "9e199" => "9486832980505137995996680633298155601158665417975650480572514558377783315917714664032744325137900886");
    impl_case!(case_7e200; "7e200" => "2645751311064590590501615753639260425710259183082450180368334459201068823230283627760392886474543611e1");
    impl_case!(case_777e204; "777e204" => "2.787471972953270789531596912111625325974789615194854615319795902911796043681078997362635440358922503E+103");
    impl_case!(case_777e600; "7e600" => "2.645751311064590590501615753639260425710259183082450180368334459201068823230283627760392886474543611E+300");
    impl_case!(case_2e900; "2e900" => "1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573E+450");
    impl_case!(case_7e999; "7e999" => "8.366600265340755479781720257851874893928153692986721998111915430804187725943170098308147119649515362E+499");
    impl_case!(case_74908163946345982392040522594123773796e999; "74908163946345982392040522594123773796e999" => "2.736935584670307552030924971360722787091742391079630976117950955395149091570790266754718322365663909E+518");
    impl_case!(case_20e1024; "20e1024" => "4.472135954999579392818347337462552470881236719223051448541794490821041851275609798828828816757564550E512");
    impl_case!(case_3en1025; "3e-1025" => "5.477225575051661134569697828008021339527446949979832542268944497324932771227227338008584361638706258E-513");

    impl_case!(case_3242053850483855en13_prec11_round_down; prec=11; round=Down; "324.2053850483855" => "18.005704236");
    impl_case!(case_3242053850483855en13_prec11_round_up; prec=11; round=Up; "324.2053850483855" => "18.005704237");
    impl_case!(case_3242053850483855en13_prec31_round_up; prec=31; round=Up; "324.2053850483855" => "18.00570423639090823994825477228");

    impl_case!(case_5d085019992340351en10_prec25_round_down; prec=25; round=Down; "5.085019992340351e-10" => "0.00002254998889653906459324292");

    impl_case!(case_3025d13579652399025_prec3_round_up; prec=3; round=Up; "3025.13579652399025" => "55.1");

    impl_case!(case_3025d13579652399025_prec9_round_down; prec=9; round=Down; "3025.13579652399025" => "55.0012345");
    impl_case!(case_3025d13579652399025_prec9_round_up; prec=9; round=Up; "3025.13579652399025" => "55.0012345");

    impl_case!(case_3025d13579652399025_prec8_round_halfdown; prec=8; round=HalfDown; "3025.13579652399025" => "55.001234");
    impl_case!(case_3025d13579652399025_prec8_round_halfeven; prec=8; round=HalfEven; "3025.13579652399025" => "55.001234");
    impl_case!(case_3025d13579652399025_prec8_round_halfup; prec=8; round=HalfUp; "3025.13579652399025" => "55.001235");

    #[test]
    fn test_sqrt_rounding() {
        let vals = vec![
            // sqrt(1.21) = 1.1, [Ceiling, Up] should round up
            ("1.21", "2", "1", "1", "1", "1", "1", "2"),
            // sqrt(2.25) = 1.5, [Ceiling, HalfEven, HalfUp, Up] should round up
            ("2.25", "2", "1", "1", "1", "2", "2", "2"),
            // sqrt(6.25) = 2.5, [Ceiling, HalfUp, Up] should round up
            ("6.25", "3", "2", "2", "2", "2", "3", "3"),
            // sqrt(8.41) = 2.9, [Ceiling, HalfDown, HalfEven, HalfUp, Up] should round up
            ("8.41", "3", "2", "2", "3", "3", "3", "3"),
        ];
        for &(val, ceiling, down, floor, half_down, half_even, half_up, up) in vals.iter() {
            let val = BigDecimal::from_str(val).unwrap();
            let ceiling = BigDecimal::from_str(ceiling).unwrap();
            let down = BigDecimal::from_str(down).unwrap();
            let floor = BigDecimal::from_str(floor).unwrap();
            let half_down = BigDecimal::from_str(half_down).unwrap();
            let half_even = BigDecimal::from_str(half_even).unwrap();
            let half_up = BigDecimal::from_str(half_up).unwrap();
            let up = BigDecimal::from_str(up).unwrap();
            let ctx = Context::default().with_prec(1).unwrap();
            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Ceiling)).unwrap(), ceiling);
            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Down)).unwrap(), down);
            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Floor)).unwrap(), floor);
            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::HalfDown)).unwrap(), half_down);
            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::HalfEven)).unwrap(), half_even);
            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::HalfUp)).unwrap(), half_up);
            assert_eq!(val.sqrt_with_context(&ctx.with_rounding_mode(RoundingMode::Up)).unwrap(), up);
        }
    }

    #[cfg(property_tests)]
    mod prop {
        use super::*;
        use proptest::*;
        use num_traits::FromPrimitive;

        proptest! {
            #[test]
            fn sqrt_of_square_is_self(f: f64, prec in 15..50u64) {
                // ignore non-normal numbers
                prop_assume!(f.is_normal());

                let n = BigDecimal::from_f64(f.abs()).unwrap().with_prec(prec);
                let n_squared = n.square();
                let x = n_squared.sqrt().unwrap();
                prop_assert_eq!(x, n);
            }
        }
    }
}