libm/math/
sqrt.rs

1/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12/* sqrt(x)
13 * Return correctly rounded sqrt.
14 *           ------------------------------------------
15 *           |  Use the hardware sqrt if you have one |
16 *           ------------------------------------------
17 * Method:
18 *   Bit by bit method using integer arithmetic. (Slow, but portable)
19 *   1. Normalization
20 *      Scale x to y in [1,4) with even powers of 2:
21 *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
22 *              sqrt(x) = 2^k * sqrt(y)
23 *   2. Bit by bit computation
24 *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
25 *           i                                                   0
26 *                                     i+1         2
27 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
28 *           i      i            i                 i
29 *
30 *      To compute q    from q , one checks whether
31 *                  i+1       i
32 *
33 *                            -(i+1) 2
34 *                      (q + 2      ) <= y.                     (2)
35 *                        i
36 *                                                            -(i+1)
37 *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
38 *                             i+1   i             i+1   i
39 *
40 *      With some algebraic manipulation, it is not difficult to see
41 *      that (2) is equivalent to
42 *                             -(i+1)
43 *                      s  +  2       <= y                      (3)
44 *                       i                i
45 *
46 *      The advantage of (3) is that s  and y  can be computed by
47 *                                    i      i
48 *      the following recurrence formula:
49 *          if (3) is false
50 *
51 *          s     =  s  ,       y    = y   ;                    (4)
52 *           i+1      i          i+1    i
53 *
54 *          otherwise,
55 *                         -i                     -(i+1)
56 *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
57 *           i+1      i          i+1    i     i
58 *
59 *      One may easily use induction to prove (4) and (5).
60 *      Note. Since the left hand side of (3) contain only i+2 bits,
61 *            it does not necessary to do a full (53-bit) comparison
62 *            in (3).
63 *   3. Final rounding
64 *      After generating the 53 bits result, we compute one more bit.
65 *      Together with the remainder, we can decide whether the
66 *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
67 *      (it will never equal to 1/2ulp).
68 *      The rounding mode can be detected by checking whether
69 *      huge + tiny is equal to huge, and whether huge - tiny is
70 *      equal to huge for some floating point number "huge" and "tiny".
71 *
72 * Special cases:
73 *      sqrt(+-0) = +-0         ... exact
74 *      sqrt(inf) = inf
75 *      sqrt(-ve) = NaN         ... with invalid signal
76 *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
77 */
78
79use core::f64;
80
81/// The square root of `x` (f64).
82#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
83pub fn sqrt(x: f64) -> f64 {
84    // On wasm32 we know that LLVM's intrinsic will compile to an optimized
85    // `f64.sqrt` native instruction, so we can leverage this for both code size
86    // and speed.
87    llvm_intrinsically_optimized! {
88        #[cfg(target_arch = "wasm32")] {
89            return if x < 0.0 {
90                f64::NAN
91            } else {
92                unsafe { ::core::intrinsics::sqrtf64(x) }
93            }
94        }
95    }
96    #[cfg(all(target_feature = "sse2", not(feature = "force-soft-floats")))]
97    {
98        // Note: This path is unlikely since LLVM will usually have already
99        // optimized sqrt calls into hardware instructions if sse2 is available,
100        // but if someone does end up here they'll appreciate the speed increase.
101        #[cfg(target_arch = "x86")]
102        use core::arch::x86::*;
103        #[cfg(target_arch = "x86_64")]
104        use core::arch::x86_64::*;
105        unsafe {
106            let m = _mm_set_sd(x);
107            let m_sqrt = _mm_sqrt_pd(m);
108            _mm_cvtsd_f64(m_sqrt)
109        }
110    }
111    #[cfg(any(not(target_feature = "sse2"), feature = "force-soft-floats"))]
112    {
113        use core::num::Wrapping;
114
115        const TINY: f64 = 1.0e-300;
116
117        let mut z: f64;
118        let sign: Wrapping<u32> = Wrapping(0x80000000);
119        let mut ix0: i32;
120        let mut s0: i32;
121        let mut q: i32;
122        let mut m: i32;
123        let mut t: i32;
124        let mut i: i32;
125        let mut r: Wrapping<u32>;
126        let mut t1: Wrapping<u32>;
127        let mut s1: Wrapping<u32>;
128        let mut ix1: Wrapping<u32>;
129        let mut q1: Wrapping<u32>;
130
131        ix0 = (x.to_bits() >> 32) as i32;
132        ix1 = Wrapping(x.to_bits() as u32);
133
134        /* take care of Inf and NaN */
135        if (ix0 & 0x7ff00000) == 0x7ff00000 {
136            return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
137        }
138        /* take care of zero */
139        if ix0 <= 0 {
140            if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
141                return x; /* sqrt(+-0) = +-0 */
142            }
143            if ix0 < 0 {
144                return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
145            }
146        }
147        /* normalize x */
148        m = ix0 >> 20;
149        if m == 0 {
150            /* subnormal x */
151            while ix0 == 0 {
152                m -= 21;
153                ix0 |= (ix1 >> 11).0 as i32;
154                ix1 <<= 21;
155            }
156            i = 0;
157            while (ix0 & 0x00100000) == 0 {
158                i += 1;
159                ix0 <<= 1;
160            }
161            m -= i - 1;
162            ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
163            ix1 = ix1 << i as usize;
164        }
165        m -= 1023; /* unbias exponent */
166        ix0 = (ix0 & 0x000fffff) | 0x00100000;
167        if (m & 1) == 1 {
168            /* odd m, double x to make it even */
169            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
170            ix1 += ix1;
171        }
172        m >>= 1; /* m = [m/2] */
173
174        /* generate sqrt(x) bit by bit */
175        ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
176        ix1 += ix1;
177        q = 0; /* [q,q1] = sqrt(x) */
178        q1 = Wrapping(0);
179        s0 = 0;
180        s1 = Wrapping(0);
181        r = Wrapping(0x00200000); /* r = moving bit from right to left */
182
183        while r != Wrapping(0) {
184            t = s0 + r.0 as i32;
185            if t <= ix0 {
186                s0 = t + r.0 as i32;
187                ix0 -= t;
188                q += r.0 as i32;
189            }
190            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
191            ix1 += ix1;
192            r >>= 1;
193        }
194
195        r = sign;
196        while r != Wrapping(0) {
197            t1 = s1 + r;
198            t = s0;
199            if t < ix0 || (t == ix0 && t1 <= ix1) {
200                s1 = t1 + r;
201                if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
202                    s0 += 1;
203                }
204                ix0 -= t;
205                if ix1 < t1 {
206                    ix0 -= 1;
207                }
208                ix1 -= t1;
209                q1 += r;
210            }
211            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
212            ix1 += ix1;
213            r >>= 1;
214        }
215
216        /* use floating add to find out rounding direction */
217        if (ix0 as u32 | ix1.0) != 0 {
218            z = 1.0 - TINY; /* raise inexact flag */
219            if z >= 1.0 {
220                z = 1.0 + TINY;
221                if q1.0 == 0xffffffff {
222                    q1 = Wrapping(0);
223                    q += 1;
224                } else if z > 1.0 {
225                    if q1.0 == 0xfffffffe {
226                        q += 1;
227                    }
228                    q1 += Wrapping(2);
229                } else {
230                    q1 += q1 & Wrapping(1);
231                }
232            }
233        }
234        ix0 = (q >> 1) + 0x3fe00000;
235        ix1 = q1 >> 1;
236        if (q & 1) == 1 {
237            ix1 |= sign;
238        }
239        ix0 += m << 20;
240        f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
241    }
242}
243
244#[cfg(test)]
245mod tests {
246    use core::f64::*;
247
248    use super::*;
249
250    #[test]
251    fn sanity_check() {
252        assert_eq!(sqrt(100.0), 10.0);
253        assert_eq!(sqrt(4.0), 2.0);
254    }
255
256    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
257    #[test]
258    fn spec_tests() {
259        // Not Asserted: FE_INVALID exception is raised if argument is negative.
260        assert!(sqrt(-1.0).is_nan());
261        assert!(sqrt(NAN).is_nan());
262        for f in [0.0, -0.0, INFINITY].iter().copied() {
263            assert_eq!(sqrt(f), f);
264        }
265    }
266
267    #[test]
268    fn conformance_tests() {
269        let values = [3.14159265359, 10000.0, f64::from_bits(0x0000000f), INFINITY];
270        let results = [
271            4610661241675116657u64,
272            4636737291354636288u64,
273            2197470602079456986u64,
274            9218868437227405312u64,
275        ];
276
277        for i in 0..values.len() {
278            let bits = f64::to_bits(sqrt(values[i]));
279            assert_eq!(results[i], bits);
280        }
281    }
282}