zerocopy_derive/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
// Copyright 2019 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

//! Derive macros for [zerocopy]'s traits.
//!
//! [zerocopy]: https://docs.rs/zerocopy

// Sometimes we want to use lints which were added after our MSRV.
// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
// this attribute, any unknown lint would cause a CI failure when testing with
// our MSRV.
#![allow(unknown_lints)]
#![deny(renamed_and_removed_lints)]
#![deny(clippy::all, clippy::missing_safety_doc, clippy::undocumented_unsafe_blocks)]
#![deny(
    rustdoc::bare_urls,
    rustdoc::broken_intra_doc_links,
    rustdoc::invalid_codeblock_attributes,
    rustdoc::invalid_html_tags,
    rustdoc::invalid_rust_codeblocks,
    rustdoc::missing_crate_level_docs,
    rustdoc::private_intra_doc_links
)]
#![recursion_limit = "128"]

mod ext;
mod repr;

use {
    proc_macro2::Span,
    quote::quote,
    syn::{
        parse_quote, Data, DataEnum, DataStruct, DataUnion, DeriveInput, Error, Expr, ExprLit,
        GenericParam, Ident, Lit,
    },
};

use {crate::ext::*, crate::repr::*};

// Unwraps a `Result<_, Vec<Error>>`, converting any `Err` value into a
// `TokenStream` and returning it.
macro_rules! try_or_print {
    ($e:expr) => {
        match $e {
            Ok(x) => x,
            Err(errors) => return print_all_errors(errors).into(),
        }
    };
}

// TODO(https://github.com/rust-lang/rust/issues/54140): Some errors could be
// made better if we could add multiple lines of error output like this:
//
// error: unsupported representation
//   --> enum.rs:28:8
//    |
// 28 | #[repr(transparent)]
//    |
// help: required by the derive of FromBytes
//
// Instead, we have more verbose error messages like "unsupported representation
// for deriving FromZeroes, FromBytes, AsBytes, or Unaligned on an enum"
//
// This will probably require Span::error
// (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error),
// which is currently unstable. Revisit this once it's stable.

#[proc_macro_derive(KnownLayout)]
pub fn derive_known_layout(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let ast = syn::parse_macro_input!(ts as DeriveInput);

    let is_repr_c_struct = match &ast.data {
        Data::Struct(..) => {
            let reprs = try_or_print!(repr::reprs::<Repr>(&ast.attrs));
            if reprs.iter().any(|(_meta, repr)| repr == &Repr::C) {
                Some(reprs)
            } else {
                None
            }
        }
        Data::Enum(..) | Data::Union(..) => None,
    };

    let fields = ast.data.field_types();

    let (require_self_sized, extras) = if let (
        Some(reprs),
        Some((trailing_field, leading_fields)),
    ) = (is_repr_c_struct, fields.split_last())
    {
        let repr_align = reprs
            .iter()
            .find_map(
                |(_meta, repr)| {
                    if let Repr::Align(repr_align) = repr {
                        Some(repr_align)
                    } else {
                        None
                    }
                },
            )
            .map(|repr_align| quote!(NonZeroUsize::new(#repr_align as usize)))
            .unwrap_or(quote!(None));

        let repr_packed = reprs
            .iter()
            .find_map(|(_meta, repr)| match repr {
                Repr::Packed => Some(1),
                Repr::PackedN(repr_packed) => Some(*repr_packed),
                _ => None,
            })
            .map(|repr_packed| quote!(NonZeroUsize::new(#repr_packed as usize)))
            .unwrap_or(quote!(None));

        (
            false,
            quote!(
                // SAFETY: `LAYOUT` accurately describes the layout of `Self`.
                // The layout of `Self` is reflected using a sequence of
                // invocations of `DstLayout::{new_zst,extend,pad_to_align}`.
                // The documentation of these items vows that invocations in
                // this manner will acurately describe a type, so long as:
                //
                //  - that type is `repr(C)`,
                //  - its fields are enumerated in the order they appear,
                //  - the presence of `repr_align` and `repr_packed` are correctly accounted for.
                //
                // We respect all three of these preconditions here. This
                // expansion is only used if `is_repr_c_struct`, we enumerate
                // the fields in order, and we extract the values of `align(N)`
                // and `packed(N)`.
                const LAYOUT: ::zerocopy::DstLayout = {
                    use ::zerocopy::macro_util::core_reexport::num::NonZeroUsize;
                    use ::zerocopy::{DstLayout, KnownLayout};

                    let repr_align = #repr_align;
                    let repr_packed = #repr_packed;

                    DstLayout::new_zst(repr_align)
                        #(.extend(DstLayout::for_type::<#leading_fields>(), repr_packed))*
                        .extend(<#trailing_field as KnownLayout>::LAYOUT, repr_packed)
                        .pad_to_align()
                };

                // SAFETY:
                // - The recursive call to `raw_from_ptr_len` preserves both address and provenance.
                // - The `as` cast preserves both address and provenance.
                // - `NonNull::new_unchecked` preserves both address and provenance.
                #[inline(always)]
                fn raw_from_ptr_len(
                    bytes: ::zerocopy::macro_util::core_reexport::ptr::NonNull<u8>,
                    elems: usize,
                ) -> ::zerocopy::macro_util::core_reexport::ptr::NonNull<Self> {
                    use ::zerocopy::{KnownLayout};
                    let trailing = <#trailing_field as KnownLayout>::raw_from_ptr_len(bytes, elems);
                    let slf = trailing.as_ptr() as *mut Self;
                    // SAFETY: Constructed from `trailing`, which is non-null.
                    unsafe { ::zerocopy::macro_util::core_reexport::ptr::NonNull::new_unchecked(slf) }
                }
            ),
        )
    } else {
        // For enums, unions, and non-`repr(C)` structs, we require that
        // `Self` is sized, and as a result don't need to reason about the
        // internals of the type.
        (
            true,
            quote!(
                // SAFETY: `LAYOUT` is guaranteed to accurately describe the
                // layout of `Self`, because that is the documented safety
                // contract of `DstLayout::for_type`.
                const LAYOUT: ::zerocopy::DstLayout = ::zerocopy::DstLayout::for_type::<Self>();

                // SAFETY: `.cast` preserves address and provenance.
                //
                // TODO(#429): Add documentation to `.cast` that promises that
                // it preserves provenance.
                #[inline(always)]
                fn raw_from_ptr_len(
                    bytes: ::zerocopy::macro_util::core_reexport::ptr::NonNull<u8>,
                    _elems: usize,
                ) -> ::zerocopy::macro_util::core_reexport::ptr::NonNull<Self> {
                    bytes.cast::<Self>()
                }
            ),
        )
    };

    match &ast.data {
        Data::Struct(strct) => {
            let require_trait_bound_on_field_types = if require_self_sized {
                RequireBoundedFields::No
            } else {
                RequireBoundedFields::Trailing
            };

            // A bound on the trailing field is required, since structs are
            // unsized if their trailing field is unsized. Reflecting the layout
            // of an usized trailing field requires that the field is
            // `KnownLayout`.
            impl_block(
                &ast,
                strct,
                Trait::KnownLayout,
                require_trait_bound_on_field_types,
                require_self_sized,
                None,
                Some(extras),
            )
        }
        Data::Enum(enm) => {
            // A bound on the trailing field is not required, since enums cannot
            // currently be unsized.
            impl_block(
                &ast,
                enm,
                Trait::KnownLayout,
                RequireBoundedFields::No,
                true,
                None,
                Some(extras),
            )
        }
        Data::Union(unn) => {
            // A bound on the trailing field is not required, since unions
            // cannot currently be unsized.
            impl_block(
                &ast,
                unn,
                Trait::KnownLayout,
                RequireBoundedFields::No,
                true,
                None,
                Some(extras),
            )
        }
    }
    .into()
}

#[proc_macro_derive(FromZeroes)]
pub fn derive_from_zeroes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let ast = syn::parse_macro_input!(ts as DeriveInput);
    match &ast.data {
        Data::Struct(strct) => derive_from_zeroes_struct(&ast, strct),
        Data::Enum(enm) => derive_from_zeroes_enum(&ast, enm),
        Data::Union(unn) => derive_from_zeroes_union(&ast, unn),
    }
    .into()
}

#[proc_macro_derive(FromBytes)]
pub fn derive_from_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let ast = syn::parse_macro_input!(ts as DeriveInput);
    match &ast.data {
        Data::Struct(strct) => derive_from_bytes_struct(&ast, strct),
        Data::Enum(enm) => derive_from_bytes_enum(&ast, enm),
        Data::Union(unn) => derive_from_bytes_union(&ast, unn),
    }
    .into()
}

#[proc_macro_derive(AsBytes)]
pub fn derive_as_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let ast = syn::parse_macro_input!(ts as DeriveInput);
    match &ast.data {
        Data::Struct(strct) => derive_as_bytes_struct(&ast, strct),
        Data::Enum(enm) => derive_as_bytes_enum(&ast, enm),
        Data::Union(unn) => derive_as_bytes_union(&ast, unn),
    }
    .into()
}

#[proc_macro_derive(Unaligned)]
pub fn derive_unaligned(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let ast = syn::parse_macro_input!(ts as DeriveInput);
    match &ast.data {
        Data::Struct(strct) => derive_unaligned_struct(&ast, strct),
        Data::Enum(enm) => derive_unaligned_enum(&ast, enm),
        Data::Union(unn) => derive_unaligned_union(&ast, unn),
    }
    .into()
}

const STRUCT_UNION_ALLOWED_REPR_COMBINATIONS: &[&[StructRepr]] = &[
    &[StructRepr::C],
    &[StructRepr::Transparent],
    &[StructRepr::Packed],
    &[StructRepr::C, StructRepr::Packed],
];

// A struct is `FromZeroes` if:
// - all fields are `FromZeroes`

fn derive_from_zeroes_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
    impl_block(ast, strct, Trait::FromZeroes, RequireBoundedFields::Yes, false, None, None)
}

// An enum is `FromZeroes` if:
// - all of its variants are fieldless
// - one of the variants has a discriminant of `0`

fn derive_from_zeroes_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
    if !enm.is_c_like() {
        return Error::new_spanned(ast, "only C-like enums can implement FromZeroes")
            .to_compile_error();
    }

    let has_explicit_zero_discriminant =
        enm.variants.iter().filter_map(|v| v.discriminant.as_ref()).any(|(_, e)| {
            if let Expr::Lit(ExprLit { lit: Lit::Int(i), .. }) = e {
                i.base10_parse::<usize>().ok() == Some(0)
            } else {
                false
            }
        });
    // If the first variant of an enum does not specify its discriminant, it is set to zero:
    // https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
    let has_implicit_zero_discriminant =
        enm.variants.iter().next().map(|v| v.discriminant.is_none()) == Some(true);

    if !has_explicit_zero_discriminant && !has_implicit_zero_discriminant {
        return Error::new_spanned(
            ast,
            "FromZeroes only supported on enums with a variant that has a discriminant of `0`",
        )
        .to_compile_error();
    }

    impl_block(ast, enm, Trait::FromZeroes, RequireBoundedFields::Yes, false, None, None)
}

// Like structs, unions are `FromZeroes` if
// - all fields are `FromZeroes`

fn derive_from_zeroes_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
    impl_block(ast, unn, Trait::FromZeroes, RequireBoundedFields::Yes, false, None, None)
}

// A struct is `FromBytes` if:
// - all fields are `FromBytes`

fn derive_from_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
    impl_block(ast, strct, Trait::FromBytes, RequireBoundedFields::Yes, false, None, None)
}

// An enum is `FromBytes` if:
// - Every possible bit pattern must be valid, which means that every bit
//   pattern must correspond to a different enum variant. Thus, for an enum
//   whose layout takes up N bytes, there must be 2^N variants.
// - Since we must know N, only representations which guarantee the layout's
//   size are allowed. These are `repr(uN)` and `repr(iN)` (`repr(C)` implies an
//   implementation-defined size). `usize` and `isize` technically guarantee the
//   layout's size, but would require us to know how large those are on the
//   target platform. This isn't terribly difficult - we could emit a const
//   expression that could call `core::mem::size_of` in order to determine the
//   size and check against the number of enum variants, but a) this would be
//   platform-specific and, b) even on Rust's smallest bit width platform (32),
//   this would require ~4 billion enum variants, which obviously isn't a thing.

fn derive_from_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
    if !enm.is_c_like() {
        return Error::new_spanned(ast, "only C-like enums can implement FromBytes")
            .to_compile_error();
    }

    let reprs = try_or_print!(ENUM_FROM_BYTES_CFG.validate_reprs(ast));

    let variants_required = match reprs.as_slice() {
        [EnumRepr::U8] | [EnumRepr::I8] => 1usize << 8,
        [EnumRepr::U16] | [EnumRepr::I16] => 1usize << 16,
        // `validate_reprs` has already validated that it's one of the preceding
        // patterns.
        _ => unreachable!(),
    };
    if enm.variants.len() != variants_required {
        return Error::new_spanned(
            ast,
            format!(
                "FromBytes only supported on {} enum with {} variants",
                reprs[0], variants_required
            ),
        )
        .to_compile_error();
    }

    impl_block(ast, enm, Trait::FromBytes, RequireBoundedFields::Yes, false, None, None)
}

#[rustfmt::skip]
const ENUM_FROM_BYTES_CFG: Config<EnumRepr> = {
    use EnumRepr::*;
    Config {
        allowed_combinations_message: r#"FromBytes requires repr of "u8", "u16", "i8", or "i16""#,
        derive_unaligned: false,
        allowed_combinations: &[
            &[U8],
            &[U16],
            &[I8],
            &[I16],
        ],
        disallowed_but_legal_combinations: &[
            &[C],
            &[U32],
            &[I32],
            &[U64],
            &[I64],
            &[Usize],
            &[Isize],
        ],
    }
};

// Like structs, unions are `FromBytes` if
// - all fields are `FromBytes`

fn derive_from_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
    impl_block(ast, unn, Trait::FromBytes, RequireBoundedFields::Yes, false, None, None)
}

// A struct is `AsBytes` if:
// - all fields are `AsBytes`
// - `repr(C)` or `repr(transparent)` and
//   - no padding (size of struct equals sum of size of field types)
// - `repr(packed)`

fn derive_as_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
    let reprs = try_or_print!(STRUCT_UNION_AS_BYTES_CFG.validate_reprs(ast));
    let is_transparent = reprs.contains(&StructRepr::Transparent);
    let is_packed = reprs.contains(&StructRepr::Packed);

    // TODO(#10): Support type parameters for non-transparent, non-packed
    // structs.
    if !ast.generics.params.is_empty() && !is_transparent && !is_packed {
        return Error::new(
            Span::call_site(),
            "unsupported on generic structs that are not repr(transparent) or repr(packed)",
        )
        .to_compile_error();
    }

    // We don't need a padding check if the struct is repr(transparent) or
    // repr(packed).
    // - repr(transparent): The layout and ABI of the whole struct is the same
    //   as its only non-ZST field (meaning there's no padding outside of that
    //   field) and we require that field to be `AsBytes` (meaning there's no
    //   padding in that field).
    // - repr(packed): Any inter-field padding bytes are removed, meaning that
    //   any padding bytes would need to come from the fields, all of which
    //   we require to be `AsBytes` (meaning they don't have any padding).
    let padding_check = if is_transparent || is_packed { None } else { Some(PaddingCheck::Struct) };
    impl_block(ast, strct, Trait::AsBytes, RequireBoundedFields::Yes, false, padding_check, None)
}

const STRUCT_UNION_AS_BYTES_CFG: Config<StructRepr> = Config {
    // Since `disallowed_but_legal_combinations` is empty, this message will
    // never actually be emitted.
    allowed_combinations_message: r#"AsBytes requires either a) repr "C" or "transparent" with all fields implementing AsBytes or, b) repr "packed""#,
    derive_unaligned: false,
    allowed_combinations: STRUCT_UNION_ALLOWED_REPR_COMBINATIONS,
    disallowed_but_legal_combinations: &[],
};

// An enum is `AsBytes` if it is C-like and has a defined repr.

fn derive_as_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
    if !enm.is_c_like() {
        return Error::new_spanned(ast, "only C-like enums can implement AsBytes")
            .to_compile_error();
    }

    // We don't care what the repr is; we only care that it is one of the
    // allowed ones.
    let _: Vec<repr::EnumRepr> = try_or_print!(ENUM_AS_BYTES_CFG.validate_reprs(ast));
    impl_block(ast, enm, Trait::AsBytes, RequireBoundedFields::No, false, None, None)
}

#[rustfmt::skip]
const ENUM_AS_BYTES_CFG: Config<EnumRepr> = {
    use EnumRepr::*;
    Config {
        // Since `disallowed_but_legal_combinations` is empty, this message will
        // never actually be emitted.
        allowed_combinations_message: r#"AsBytes requires repr of "C", "u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", or "isize""#,
        derive_unaligned: false,
        allowed_combinations: &[
            &[C],
            &[U8],
            &[U16],
            &[I8],
            &[I16],
            &[U32],
            &[I32],
            &[U64],
            &[I64],
            &[Usize],
            &[Isize],
        ],
        disallowed_but_legal_combinations: &[],
    }
};

// A union is `AsBytes` if:
// - all fields are `AsBytes`
// - `repr(C)`, `repr(transparent)`, or `repr(packed)`
// - no padding (size of union equals size of each field type)

fn derive_as_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
    // TODO(#10): Support type parameters.
    if !ast.generics.params.is_empty() {
        return Error::new(Span::call_site(), "unsupported on types with type parameters")
            .to_compile_error();
    }

    try_or_print!(STRUCT_UNION_AS_BYTES_CFG.validate_reprs(ast));

    impl_block(
        ast,
        unn,
        Trait::AsBytes,
        RequireBoundedFields::Yes,
        false,
        Some(PaddingCheck::Union),
        None,
    )
}

// A struct is `Unaligned` if:
// - `repr(align)` is no more than 1 and either
//   - `repr(C)` or `repr(transparent)` and
//     - all fields `Unaligned`
//   - `repr(packed)`

fn derive_unaligned_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
    let reprs = try_or_print!(STRUCT_UNION_UNALIGNED_CFG.validate_reprs(ast));
    let require_trait_bounds_on_field_types = (!reprs.contains(&StructRepr::Packed)).into();

    impl_block(ast, strct, Trait::Unaligned, require_trait_bounds_on_field_types, false, None, None)
}

const STRUCT_UNION_UNALIGNED_CFG: Config<StructRepr> = Config {
    // Since `disallowed_but_legal_combinations` is empty, this message will
    // never actually be emitted.
    allowed_combinations_message: r#"Unaligned requires either a) repr "C" or "transparent" with all fields implementing Unaligned or, b) repr "packed""#,
    derive_unaligned: true,
    allowed_combinations: STRUCT_UNION_ALLOWED_REPR_COMBINATIONS,
    disallowed_but_legal_combinations: &[],
};

// An enum is `Unaligned` if:
// - No `repr(align(N > 1))`
// - `repr(u8)` or `repr(i8)`

fn derive_unaligned_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
    if !enm.is_c_like() {
        return Error::new_spanned(ast, "only C-like enums can implement Unaligned")
            .to_compile_error();
    }

    // The only valid reprs are `u8` and `i8`, and optionally `align(1)`. We
    // don't actually care what the reprs are so long as they satisfy that
    // requirement.
    let _: Vec<repr::EnumRepr> = try_or_print!(ENUM_UNALIGNED_CFG.validate_reprs(ast));

    // C-like enums cannot currently have type parameters, so this value of true
    // for `require_trait_bound_on_field_types` doesn't really do anything. But
    // it's marginally more future-proof in case that restriction is lifted in
    // the future.
    impl_block(ast, enm, Trait::Unaligned, RequireBoundedFields::Yes, false, None, None)
}

#[rustfmt::skip]
const ENUM_UNALIGNED_CFG: Config<EnumRepr> = {
    use EnumRepr::*;
    Config {
        allowed_combinations_message:
            r#"Unaligned requires repr of "u8" or "i8", and no alignment (i.e., repr(align(N > 1)))"#,
        derive_unaligned: true,
        allowed_combinations: &[
            &[U8],
            &[I8],
        ],
        disallowed_but_legal_combinations: &[
            &[C],
            &[U16],
            &[U32],
            &[U64],
            &[Usize],
            &[I16],
            &[I32],
            &[I64],
            &[Isize],
        ],
    }
};

// Like structs, a union is `Unaligned` if:
// - `repr(align)` is no more than 1 and either
//   - `repr(C)` or `repr(transparent)` and
//     - all fields `Unaligned`
//   - `repr(packed)`

fn derive_unaligned_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
    let reprs = try_or_print!(STRUCT_UNION_UNALIGNED_CFG.validate_reprs(ast));
    let require_trait_bound_on_field_types = (!reprs.contains(&StructRepr::Packed)).into();

    impl_block(ast, unn, Trait::Unaligned, require_trait_bound_on_field_types, false, None, None)
}

// This enum describes what kind of padding check needs to be generated for the
// associated impl.
enum PaddingCheck {
    // Check that the sum of the fields' sizes exactly equals the struct's size.
    Struct,
    // Check that the size of each field exactly equals the union's size.
    Union,
}

impl PaddingCheck {
    /// Returns the ident of the macro to call in order to validate that a type
    /// passes the padding check encoded by `PaddingCheck`.
    fn validator_macro_ident(&self) -> Ident {
        let s = match self {
            PaddingCheck::Struct => "struct_has_padding",
            PaddingCheck::Union => "union_has_padding",
        };

        Ident::new(s, Span::call_site())
    }
}

#[derive(Debug, Eq, PartialEq)]
enum Trait {
    KnownLayout,
    FromZeroes,
    FromBytes,
    AsBytes,
    Unaligned,
}

impl Trait {
    fn ident(&self) -> Ident {
        Ident::new(format!("{:?}", self).as_str(), Span::call_site())
    }
}

#[derive(Debug, Eq, PartialEq)]
enum RequireBoundedFields {
    No,
    Yes,
    Trailing,
}

impl From<bool> for RequireBoundedFields {
    fn from(do_require: bool) -> Self {
        match do_require {
            true => Self::Yes,
            false => Self::No,
        }
    }
}

fn impl_block<D: DataExt>(
    input: &DeriveInput,
    data: &D,
    trt: Trait,
    require_trait_bound_on_field_types: RequireBoundedFields,
    require_self_sized: bool,
    padding_check: Option<PaddingCheck>,
    extras: Option<proc_macro2::TokenStream>,
) -> proc_macro2::TokenStream {
    // In this documentation, we will refer to this hypothetical struct:
    //
    //   #[derive(FromBytes)]
    //   struct Foo<T, I: Iterator>
    //   where
    //       T: Copy,
    //       I: Clone,
    //       I::Item: Clone,
    //   {
    //       a: u8,
    //       b: T,
    //       c: I::Item,
    //   }
    //
    // We extract the field types, which in this case are `u8`, `T`, and
    // `I::Item`. We re-use the existing parameters and where clauses. If
    // `require_trait_bound == true` (as it is for `FromBytes), we add where
    // bounds for each field's type:
    //
    //   impl<T, I: Iterator> FromBytes for Foo<T, I>
    //   where
    //       T: Copy,
    //       I: Clone,
    //       I::Item: Clone,
    //       T: FromBytes,
    //       I::Item: FromBytes,
    //   {
    //   }
    //
    // NOTE: It is standard practice to only emit bounds for the type parameters
    // themselves, not for field types based on those parameters (e.g., `T` vs
    // `T::Foo`). For a discussion of why this is standard practice, see
    // https://github.com/rust-lang/rust/issues/26925.
    //
    // The reason we diverge from this standard is that doing it that way for us
    // would be unsound. E.g., consider a type, `T` where `T: FromBytes` but
    // `T::Foo: !FromBytes`. It would not be sound for us to accept a type with
    // a `T::Foo` field as `FromBytes` simply because `T: FromBytes`.
    //
    // While there's no getting around this requirement for us, it does have the
    // pretty serious downside that, when lifetimes are involved, the trait
    // solver ties itself in knots:
    //
    //     #[derive(Unaligned)]
    //     #[repr(C)]
    //     struct Dup<'a, 'b> {
    //         a: PhantomData<&'a u8>,
    //         b: PhantomData<&'b u8>,
    //     }
    //
    //     error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned`
    //      --> src/main.rs:6:10
    //       |
    //     6 | #[derive(Unaligned)]
    //       |          ^^^^^^^^^
    //       |
    //       = note: required by `zerocopy::Unaligned`

    let type_ident = &input.ident;
    let trait_ident = trt.ident();
    let field_types = data.field_types();

    let bound_tt = |ty| parse_quote!(#ty: ::zerocopy::#trait_ident);
    let field_type_bounds: Vec<_> = match (require_trait_bound_on_field_types, &field_types[..]) {
        (RequireBoundedFields::Yes, _) => field_types.iter().map(bound_tt).collect(),
        (RequireBoundedFields::No, _) | (RequireBoundedFields::Trailing, []) => vec![],
        (RequireBoundedFields::Trailing, [.., last]) => vec![bound_tt(last)],
    };

    // Don't bother emitting a padding check if there are no fields.
    #[allow(
        unstable_name_collisions, // See `BoolExt` below
        clippy::incompatible_msrv, // https://github.com/rust-lang/rust-clippy/issues/12280
    )]
    let padding_check_bound = padding_check.and_then(|check| (!field_types.is_empty()).then_some(check)).map(|check| {
        let fields = field_types.iter();
        let validator_macro = check.validator_macro_ident();
        parse_quote!(
            ::zerocopy::macro_util::HasPadding<#type_ident, {::zerocopy::#validator_macro!(#type_ident, #(#fields),*)}>:
                ::zerocopy::macro_util::ShouldBe<false>
        )
    });

    let self_sized_bound = if require_self_sized { Some(parse_quote!(Self: Sized)) } else { None };

    let bounds = input
        .generics
        .where_clause
        .as_ref()
        .map(|where_clause| where_clause.predicates.iter())
        .into_iter()
        .flatten()
        .chain(field_type_bounds.iter())
        .chain(padding_check_bound.iter())
        .chain(self_sized_bound.iter());

    // The parameters with trait bounds, but without type defaults.
    let params = input.generics.params.clone().into_iter().map(|mut param| {
        match &mut param {
            GenericParam::Type(ty) => ty.default = None,
            GenericParam::Const(cnst) => cnst.default = None,
            GenericParam::Lifetime(_) => {}
        }
        quote!(#param)
    });

    // The identifiers of the parameters without trait bounds or type defaults.
    let param_idents = input.generics.params.iter().map(|param| match param {
        GenericParam::Type(ty) => {
            let ident = &ty.ident;
            quote!(#ident)
        }
        GenericParam::Lifetime(l) => {
            let ident = &l.lifetime;
            quote!(#ident)
        }
        GenericParam::Const(cnst) => {
            let ident = &cnst.ident;
            quote!({#ident})
        }
    });

    quote! {
        // TODO(#553): Add a test that generates a warning when
        // `#[allow(deprecated)]` isn't present.
        #[allow(deprecated)]
        unsafe impl < #(#params),* > ::zerocopy::#trait_ident for #type_ident < #(#param_idents),* >
        where
            #(#bounds,)*
        {
            fn only_derive_is_allowed_to_implement_this_trait() {}

            #extras
        }
    }
}

fn print_all_errors(errors: Vec<Error>) -> proc_macro2::TokenStream {
    errors.iter().map(Error::to_compile_error).collect()
}

// A polyfill for `Option::then_some`, which was added after our MSRV.
//
// TODO(#67): Remove this once our MSRV is >= 1.62.
#[allow(unused)]
trait BoolExt {
    fn then_some<T>(self, t: T) -> Option<T>;
}

#[allow(unused)]
impl BoolExt for bool {
    fn then_some<T>(self, t: T) -> Option<T> {
        if self {
            Some(t)
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_config_repr_orderings() {
        // Validate that the repr lists in the various configs are in the
        // canonical order. If they aren't, then our algorithm to look up in
        // those lists won't work.

        // TODO(https://github.com/rust-lang/rust/issues/53485): Remove once
        // `Vec::is_sorted` is stabilized.
        fn is_sorted_and_deduped<T: Clone + Ord>(ts: &[T]) -> bool {
            let mut sorted = ts.to_vec();
            sorted.sort();
            sorted.dedup();
            ts == sorted.as_slice()
        }

        fn elements_are_sorted_and_deduped<T: Clone + Ord>(lists: &[&[T]]) -> bool {
            lists.iter().all(|list| is_sorted_and_deduped(list))
        }

        fn config_is_sorted<T: KindRepr + Clone>(config: &Config<T>) -> bool {
            elements_are_sorted_and_deduped(config.allowed_combinations)
                && elements_are_sorted_and_deduped(config.disallowed_but_legal_combinations)
        }

        assert!(config_is_sorted(&STRUCT_UNION_UNALIGNED_CFG));
        assert!(config_is_sorted(&ENUM_FROM_BYTES_CFG));
        assert!(config_is_sorted(&ENUM_UNALIGNED_CFG));
    }

    #[test]
    fn test_config_repr_no_overlap() {
        // Validate that no set of reprs appears in both the
        // `allowed_combinations` and `disallowed_but_legal_combinations` lists.

        fn overlap<T: Eq>(a: &[T], b: &[T]) -> bool {
            a.iter().any(|elem| b.contains(elem))
        }

        fn config_overlaps<T: KindRepr + Eq>(config: &Config<T>) -> bool {
            overlap(config.allowed_combinations, config.disallowed_but_legal_combinations)
        }

        assert!(!config_overlaps(&STRUCT_UNION_UNALIGNED_CFG));
        assert!(!config_overlaps(&ENUM_FROM_BYTES_CFG));
        assert!(!config_overlaps(&ENUM_UNALIGNED_CFG));
    }
}