zerocopy_derive/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
// Copyright 2019 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
//! Derive macros for [zerocopy]'s traits.
//!
//! [zerocopy]: https://docs.rs/zerocopy
// Sometimes we want to use lints which were added after our MSRV.
// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
// this attribute, any unknown lint would cause a CI failure when testing with
// our MSRV.
#![allow(unknown_lints)]
#![deny(renamed_and_removed_lints)]
#![deny(clippy::all, clippy::missing_safety_doc, clippy::undocumented_unsafe_blocks)]
#![deny(
rustdoc::bare_urls,
rustdoc::broken_intra_doc_links,
rustdoc::invalid_codeblock_attributes,
rustdoc::invalid_html_tags,
rustdoc::invalid_rust_codeblocks,
rustdoc::missing_crate_level_docs,
rustdoc::private_intra_doc_links
)]
#![recursion_limit = "128"]
mod ext;
mod repr;
use {
proc_macro2::Span,
quote::quote,
syn::{
parse_quote, Data, DataEnum, DataStruct, DataUnion, DeriveInput, Error, Expr, ExprLit,
GenericParam, Ident, Lit,
},
};
use {crate::ext::*, crate::repr::*};
// Unwraps a `Result<_, Vec<Error>>`, converting any `Err` value into a
// `TokenStream` and returning it.
macro_rules! try_or_print {
($e:expr) => {
match $e {
Ok(x) => x,
Err(errors) => return print_all_errors(errors).into(),
}
};
}
// TODO(https://github.com/rust-lang/rust/issues/54140): Some errors could be
// made better if we could add multiple lines of error output like this:
//
// error: unsupported representation
// --> enum.rs:28:8
// |
// 28 | #[repr(transparent)]
// |
// help: required by the derive of FromBytes
//
// Instead, we have more verbose error messages like "unsupported representation
// for deriving FromZeroes, FromBytes, AsBytes, or Unaligned on an enum"
//
// This will probably require Span::error
// (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error),
// which is currently unstable. Revisit this once it's stable.
#[proc_macro_derive(KnownLayout)]
pub fn derive_known_layout(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
let ast = syn::parse_macro_input!(ts as DeriveInput);
let is_repr_c_struct = match &ast.data {
Data::Struct(..) => {
let reprs = try_or_print!(repr::reprs::<Repr>(&ast.attrs));
if reprs.iter().any(|(_meta, repr)| repr == &Repr::C) {
Some(reprs)
} else {
None
}
}
Data::Enum(..) | Data::Union(..) => None,
};
let fields = ast.data.field_types();
let (require_self_sized, extras) = if let (
Some(reprs),
Some((trailing_field, leading_fields)),
) = (is_repr_c_struct, fields.split_last())
{
let repr_align = reprs
.iter()
.find_map(
|(_meta, repr)| {
if let Repr::Align(repr_align) = repr {
Some(repr_align)
} else {
None
}
},
)
.map(|repr_align| quote!(NonZeroUsize::new(#repr_align as usize)))
.unwrap_or(quote!(None));
let repr_packed = reprs
.iter()
.find_map(|(_meta, repr)| match repr {
Repr::Packed => Some(1),
Repr::PackedN(repr_packed) => Some(*repr_packed),
_ => None,
})
.map(|repr_packed| quote!(NonZeroUsize::new(#repr_packed as usize)))
.unwrap_or(quote!(None));
(
false,
quote!(
// SAFETY: `LAYOUT` accurately describes the layout of `Self`.
// The layout of `Self` is reflected using a sequence of
// invocations of `DstLayout::{new_zst,extend,pad_to_align}`.
// The documentation of these items vows that invocations in
// this manner will acurately describe a type, so long as:
//
// - that type is `repr(C)`,
// - its fields are enumerated in the order they appear,
// - the presence of `repr_align` and `repr_packed` are correctly accounted for.
//
// We respect all three of these preconditions here. This
// expansion is only used if `is_repr_c_struct`, we enumerate
// the fields in order, and we extract the values of `align(N)`
// and `packed(N)`.
const LAYOUT: ::zerocopy::DstLayout = {
use ::zerocopy::macro_util::core_reexport::num::NonZeroUsize;
use ::zerocopy::{DstLayout, KnownLayout};
let repr_align = #repr_align;
let repr_packed = #repr_packed;
DstLayout::new_zst(repr_align)
#(.extend(DstLayout::for_type::<#leading_fields>(), repr_packed))*
.extend(<#trailing_field as KnownLayout>::LAYOUT, repr_packed)
.pad_to_align()
};
// SAFETY:
// - The recursive call to `raw_from_ptr_len` preserves both address and provenance.
// - The `as` cast preserves both address and provenance.
// - `NonNull::new_unchecked` preserves both address and provenance.
#[inline(always)]
fn raw_from_ptr_len(
bytes: ::zerocopy::macro_util::core_reexport::ptr::NonNull<u8>,
elems: usize,
) -> ::zerocopy::macro_util::core_reexport::ptr::NonNull<Self> {
use ::zerocopy::{KnownLayout};
let trailing = <#trailing_field as KnownLayout>::raw_from_ptr_len(bytes, elems);
let slf = trailing.as_ptr() as *mut Self;
// SAFETY: Constructed from `trailing`, which is non-null.
unsafe { ::zerocopy::macro_util::core_reexport::ptr::NonNull::new_unchecked(slf) }
}
),
)
} else {
// For enums, unions, and non-`repr(C)` structs, we require that
// `Self` is sized, and as a result don't need to reason about the
// internals of the type.
(
true,
quote!(
// SAFETY: `LAYOUT` is guaranteed to accurately describe the
// layout of `Self`, because that is the documented safety
// contract of `DstLayout::for_type`.
const LAYOUT: ::zerocopy::DstLayout = ::zerocopy::DstLayout::for_type::<Self>();
// SAFETY: `.cast` preserves address and provenance.
//
// TODO(#429): Add documentation to `.cast` that promises that
// it preserves provenance.
#[inline(always)]
fn raw_from_ptr_len(
bytes: ::zerocopy::macro_util::core_reexport::ptr::NonNull<u8>,
_elems: usize,
) -> ::zerocopy::macro_util::core_reexport::ptr::NonNull<Self> {
bytes.cast::<Self>()
}
),
)
};
match &ast.data {
Data::Struct(strct) => {
let require_trait_bound_on_field_types = if require_self_sized {
RequireBoundedFields::No
} else {
RequireBoundedFields::Trailing
};
// A bound on the trailing field is required, since structs are
// unsized if their trailing field is unsized. Reflecting the layout
// of an usized trailing field requires that the field is
// `KnownLayout`.
impl_block(
&ast,
strct,
Trait::KnownLayout,
require_trait_bound_on_field_types,
require_self_sized,
None,
Some(extras),
)
}
Data::Enum(enm) => {
// A bound on the trailing field is not required, since enums cannot
// currently be unsized.
impl_block(
&ast,
enm,
Trait::KnownLayout,
RequireBoundedFields::No,
true,
None,
Some(extras),
)
}
Data::Union(unn) => {
// A bound on the trailing field is not required, since unions
// cannot currently be unsized.
impl_block(
&ast,
unn,
Trait::KnownLayout,
RequireBoundedFields::No,
true,
None,
Some(extras),
)
}
}
.into()
}
#[proc_macro_derive(FromZeroes)]
pub fn derive_from_zeroes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
let ast = syn::parse_macro_input!(ts as DeriveInput);
match &ast.data {
Data::Struct(strct) => derive_from_zeroes_struct(&ast, strct),
Data::Enum(enm) => derive_from_zeroes_enum(&ast, enm),
Data::Union(unn) => derive_from_zeroes_union(&ast, unn),
}
.into()
}
#[proc_macro_derive(FromBytes)]
pub fn derive_from_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
let ast = syn::parse_macro_input!(ts as DeriveInput);
match &ast.data {
Data::Struct(strct) => derive_from_bytes_struct(&ast, strct),
Data::Enum(enm) => derive_from_bytes_enum(&ast, enm),
Data::Union(unn) => derive_from_bytes_union(&ast, unn),
}
.into()
}
#[proc_macro_derive(AsBytes)]
pub fn derive_as_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
let ast = syn::parse_macro_input!(ts as DeriveInput);
match &ast.data {
Data::Struct(strct) => derive_as_bytes_struct(&ast, strct),
Data::Enum(enm) => derive_as_bytes_enum(&ast, enm),
Data::Union(unn) => derive_as_bytes_union(&ast, unn),
}
.into()
}
#[proc_macro_derive(Unaligned)]
pub fn derive_unaligned(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
let ast = syn::parse_macro_input!(ts as DeriveInput);
match &ast.data {
Data::Struct(strct) => derive_unaligned_struct(&ast, strct),
Data::Enum(enm) => derive_unaligned_enum(&ast, enm),
Data::Union(unn) => derive_unaligned_union(&ast, unn),
}
.into()
}
const STRUCT_UNION_ALLOWED_REPR_COMBINATIONS: &[&[StructRepr]] = &[
&[StructRepr::C],
&[StructRepr::Transparent],
&[StructRepr::Packed],
&[StructRepr::C, StructRepr::Packed],
];
// A struct is `FromZeroes` if:
// - all fields are `FromZeroes`
fn derive_from_zeroes_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
impl_block(ast, strct, Trait::FromZeroes, RequireBoundedFields::Yes, false, None, None)
}
// An enum is `FromZeroes` if:
// - all of its variants are fieldless
// - one of the variants has a discriminant of `0`
fn derive_from_zeroes_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
if !enm.is_c_like() {
return Error::new_spanned(ast, "only C-like enums can implement FromZeroes")
.to_compile_error();
}
let has_explicit_zero_discriminant =
enm.variants.iter().filter_map(|v| v.discriminant.as_ref()).any(|(_, e)| {
if let Expr::Lit(ExprLit { lit: Lit::Int(i), .. }) = e {
i.base10_parse::<usize>().ok() == Some(0)
} else {
false
}
});
// If the first variant of an enum does not specify its discriminant, it is set to zero:
// https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
let has_implicit_zero_discriminant =
enm.variants.iter().next().map(|v| v.discriminant.is_none()) == Some(true);
if !has_explicit_zero_discriminant && !has_implicit_zero_discriminant {
return Error::new_spanned(
ast,
"FromZeroes only supported on enums with a variant that has a discriminant of `0`",
)
.to_compile_error();
}
impl_block(ast, enm, Trait::FromZeroes, RequireBoundedFields::Yes, false, None, None)
}
// Like structs, unions are `FromZeroes` if
// - all fields are `FromZeroes`
fn derive_from_zeroes_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
impl_block(ast, unn, Trait::FromZeroes, RequireBoundedFields::Yes, false, None, None)
}
// A struct is `FromBytes` if:
// - all fields are `FromBytes`
fn derive_from_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
impl_block(ast, strct, Trait::FromBytes, RequireBoundedFields::Yes, false, None, None)
}
// An enum is `FromBytes` if:
// - Every possible bit pattern must be valid, which means that every bit
// pattern must correspond to a different enum variant. Thus, for an enum
// whose layout takes up N bytes, there must be 2^N variants.
// - Since we must know N, only representations which guarantee the layout's
// size are allowed. These are `repr(uN)` and `repr(iN)` (`repr(C)` implies an
// implementation-defined size). `usize` and `isize` technically guarantee the
// layout's size, but would require us to know how large those are on the
// target platform. This isn't terribly difficult - we could emit a const
// expression that could call `core::mem::size_of` in order to determine the
// size and check against the number of enum variants, but a) this would be
// platform-specific and, b) even on Rust's smallest bit width platform (32),
// this would require ~4 billion enum variants, which obviously isn't a thing.
fn derive_from_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
if !enm.is_c_like() {
return Error::new_spanned(ast, "only C-like enums can implement FromBytes")
.to_compile_error();
}
let reprs = try_or_print!(ENUM_FROM_BYTES_CFG.validate_reprs(ast));
let variants_required = match reprs.as_slice() {
[EnumRepr::U8] | [EnumRepr::I8] => 1usize << 8,
[EnumRepr::U16] | [EnumRepr::I16] => 1usize << 16,
// `validate_reprs` has already validated that it's one of the preceding
// patterns.
_ => unreachable!(),
};
if enm.variants.len() != variants_required {
return Error::new_spanned(
ast,
format!(
"FromBytes only supported on {} enum with {} variants",
reprs[0], variants_required
),
)
.to_compile_error();
}
impl_block(ast, enm, Trait::FromBytes, RequireBoundedFields::Yes, false, None, None)
}
#[rustfmt::skip]
const ENUM_FROM_BYTES_CFG: Config<EnumRepr> = {
use EnumRepr::*;
Config {
allowed_combinations_message: r#"FromBytes requires repr of "u8", "u16", "i8", or "i16""#,
derive_unaligned: false,
allowed_combinations: &[
&[U8],
&[U16],
&[I8],
&[I16],
],
disallowed_but_legal_combinations: &[
&[C],
&[U32],
&[I32],
&[U64],
&[I64],
&[Usize],
&[Isize],
],
}
};
// Like structs, unions are `FromBytes` if
// - all fields are `FromBytes`
fn derive_from_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
impl_block(ast, unn, Trait::FromBytes, RequireBoundedFields::Yes, false, None, None)
}
// A struct is `AsBytes` if:
// - all fields are `AsBytes`
// - `repr(C)` or `repr(transparent)` and
// - no padding (size of struct equals sum of size of field types)
// - `repr(packed)`
fn derive_as_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
let reprs = try_or_print!(STRUCT_UNION_AS_BYTES_CFG.validate_reprs(ast));
let is_transparent = reprs.contains(&StructRepr::Transparent);
let is_packed = reprs.contains(&StructRepr::Packed);
// TODO(#10): Support type parameters for non-transparent, non-packed
// structs.
if !ast.generics.params.is_empty() && !is_transparent && !is_packed {
return Error::new(
Span::call_site(),
"unsupported on generic structs that are not repr(transparent) or repr(packed)",
)
.to_compile_error();
}
// We don't need a padding check if the struct is repr(transparent) or
// repr(packed).
// - repr(transparent): The layout and ABI of the whole struct is the same
// as its only non-ZST field (meaning there's no padding outside of that
// field) and we require that field to be `AsBytes` (meaning there's no
// padding in that field).
// - repr(packed): Any inter-field padding bytes are removed, meaning that
// any padding bytes would need to come from the fields, all of which
// we require to be `AsBytes` (meaning they don't have any padding).
let padding_check = if is_transparent || is_packed { None } else { Some(PaddingCheck::Struct) };
impl_block(ast, strct, Trait::AsBytes, RequireBoundedFields::Yes, false, padding_check, None)
}
const STRUCT_UNION_AS_BYTES_CFG: Config<StructRepr> = Config {
// Since `disallowed_but_legal_combinations` is empty, this message will
// never actually be emitted.
allowed_combinations_message: r#"AsBytes requires either a) repr "C" or "transparent" with all fields implementing AsBytes or, b) repr "packed""#,
derive_unaligned: false,
allowed_combinations: STRUCT_UNION_ALLOWED_REPR_COMBINATIONS,
disallowed_but_legal_combinations: &[],
};
// An enum is `AsBytes` if it is C-like and has a defined repr.
fn derive_as_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
if !enm.is_c_like() {
return Error::new_spanned(ast, "only C-like enums can implement AsBytes")
.to_compile_error();
}
// We don't care what the repr is; we only care that it is one of the
// allowed ones.
let _: Vec<repr::EnumRepr> = try_or_print!(ENUM_AS_BYTES_CFG.validate_reprs(ast));
impl_block(ast, enm, Trait::AsBytes, RequireBoundedFields::No, false, None, None)
}
#[rustfmt::skip]
const ENUM_AS_BYTES_CFG: Config<EnumRepr> = {
use EnumRepr::*;
Config {
// Since `disallowed_but_legal_combinations` is empty, this message will
// never actually be emitted.
allowed_combinations_message: r#"AsBytes requires repr of "C", "u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", or "isize""#,
derive_unaligned: false,
allowed_combinations: &[
&[C],
&[U8],
&[U16],
&[I8],
&[I16],
&[U32],
&[I32],
&[U64],
&[I64],
&[Usize],
&[Isize],
],
disallowed_but_legal_combinations: &[],
}
};
// A union is `AsBytes` if:
// - all fields are `AsBytes`
// - `repr(C)`, `repr(transparent)`, or `repr(packed)`
// - no padding (size of union equals size of each field type)
fn derive_as_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
// TODO(#10): Support type parameters.
if !ast.generics.params.is_empty() {
return Error::new(Span::call_site(), "unsupported on types with type parameters")
.to_compile_error();
}
try_or_print!(STRUCT_UNION_AS_BYTES_CFG.validate_reprs(ast));
impl_block(
ast,
unn,
Trait::AsBytes,
RequireBoundedFields::Yes,
false,
Some(PaddingCheck::Union),
None,
)
}
// A struct is `Unaligned` if:
// - `repr(align)` is no more than 1 and either
// - `repr(C)` or `repr(transparent)` and
// - all fields `Unaligned`
// - `repr(packed)`
fn derive_unaligned_struct(ast: &DeriveInput, strct: &DataStruct) -> proc_macro2::TokenStream {
let reprs = try_or_print!(STRUCT_UNION_UNALIGNED_CFG.validate_reprs(ast));
let require_trait_bounds_on_field_types = (!reprs.contains(&StructRepr::Packed)).into();
impl_block(ast, strct, Trait::Unaligned, require_trait_bounds_on_field_types, false, None, None)
}
const STRUCT_UNION_UNALIGNED_CFG: Config<StructRepr> = Config {
// Since `disallowed_but_legal_combinations` is empty, this message will
// never actually be emitted.
allowed_combinations_message: r#"Unaligned requires either a) repr "C" or "transparent" with all fields implementing Unaligned or, b) repr "packed""#,
derive_unaligned: true,
allowed_combinations: STRUCT_UNION_ALLOWED_REPR_COMBINATIONS,
disallowed_but_legal_combinations: &[],
};
// An enum is `Unaligned` if:
// - No `repr(align(N > 1))`
// - `repr(u8)` or `repr(i8)`
fn derive_unaligned_enum(ast: &DeriveInput, enm: &DataEnum) -> proc_macro2::TokenStream {
if !enm.is_c_like() {
return Error::new_spanned(ast, "only C-like enums can implement Unaligned")
.to_compile_error();
}
// The only valid reprs are `u8` and `i8`, and optionally `align(1)`. We
// don't actually care what the reprs are so long as they satisfy that
// requirement.
let _: Vec<repr::EnumRepr> = try_or_print!(ENUM_UNALIGNED_CFG.validate_reprs(ast));
// C-like enums cannot currently have type parameters, so this value of true
// for `require_trait_bound_on_field_types` doesn't really do anything. But
// it's marginally more future-proof in case that restriction is lifted in
// the future.
impl_block(ast, enm, Trait::Unaligned, RequireBoundedFields::Yes, false, None, None)
}
#[rustfmt::skip]
const ENUM_UNALIGNED_CFG: Config<EnumRepr> = {
use EnumRepr::*;
Config {
allowed_combinations_message:
r#"Unaligned requires repr of "u8" or "i8", and no alignment (i.e., repr(align(N > 1)))"#,
derive_unaligned: true,
allowed_combinations: &[
&[U8],
&[I8],
],
disallowed_but_legal_combinations: &[
&[C],
&[U16],
&[U32],
&[U64],
&[Usize],
&[I16],
&[I32],
&[I64],
&[Isize],
],
}
};
// Like structs, a union is `Unaligned` if:
// - `repr(align)` is no more than 1 and either
// - `repr(C)` or `repr(transparent)` and
// - all fields `Unaligned`
// - `repr(packed)`
fn derive_unaligned_union(ast: &DeriveInput, unn: &DataUnion) -> proc_macro2::TokenStream {
let reprs = try_or_print!(STRUCT_UNION_UNALIGNED_CFG.validate_reprs(ast));
let require_trait_bound_on_field_types = (!reprs.contains(&StructRepr::Packed)).into();
impl_block(ast, unn, Trait::Unaligned, require_trait_bound_on_field_types, false, None, None)
}
// This enum describes what kind of padding check needs to be generated for the
// associated impl.
enum PaddingCheck {
// Check that the sum of the fields' sizes exactly equals the struct's size.
Struct,
// Check that the size of each field exactly equals the union's size.
Union,
}
impl PaddingCheck {
/// Returns the ident of the macro to call in order to validate that a type
/// passes the padding check encoded by `PaddingCheck`.
fn validator_macro_ident(&self) -> Ident {
let s = match self {
PaddingCheck::Struct => "struct_has_padding",
PaddingCheck::Union => "union_has_padding",
};
Ident::new(s, Span::call_site())
}
}
#[derive(Debug, Eq, PartialEq)]
enum Trait {
KnownLayout,
FromZeroes,
FromBytes,
AsBytes,
Unaligned,
}
impl Trait {
fn ident(&self) -> Ident {
Ident::new(format!("{:?}", self).as_str(), Span::call_site())
}
}
#[derive(Debug, Eq, PartialEq)]
enum RequireBoundedFields {
No,
Yes,
Trailing,
}
impl From<bool> for RequireBoundedFields {
fn from(do_require: bool) -> Self {
match do_require {
true => Self::Yes,
false => Self::No,
}
}
}
fn impl_block<D: DataExt>(
input: &DeriveInput,
data: &D,
trt: Trait,
require_trait_bound_on_field_types: RequireBoundedFields,
require_self_sized: bool,
padding_check: Option<PaddingCheck>,
extras: Option<proc_macro2::TokenStream>,
) -> proc_macro2::TokenStream {
// In this documentation, we will refer to this hypothetical struct:
//
// #[derive(FromBytes)]
// struct Foo<T, I: Iterator>
// where
// T: Copy,
// I: Clone,
// I::Item: Clone,
// {
// a: u8,
// b: T,
// c: I::Item,
// }
//
// We extract the field types, which in this case are `u8`, `T`, and
// `I::Item`. We re-use the existing parameters and where clauses. If
// `require_trait_bound == true` (as it is for `FromBytes), we add where
// bounds for each field's type:
//
// impl<T, I: Iterator> FromBytes for Foo<T, I>
// where
// T: Copy,
// I: Clone,
// I::Item: Clone,
// T: FromBytes,
// I::Item: FromBytes,
// {
// }
//
// NOTE: It is standard practice to only emit bounds for the type parameters
// themselves, not for field types based on those parameters (e.g., `T` vs
// `T::Foo`). For a discussion of why this is standard practice, see
// https://github.com/rust-lang/rust/issues/26925.
//
// The reason we diverge from this standard is that doing it that way for us
// would be unsound. E.g., consider a type, `T` where `T: FromBytes` but
// `T::Foo: !FromBytes`. It would not be sound for us to accept a type with
// a `T::Foo` field as `FromBytes` simply because `T: FromBytes`.
//
// While there's no getting around this requirement for us, it does have the
// pretty serious downside that, when lifetimes are involved, the trait
// solver ties itself in knots:
//
// #[derive(Unaligned)]
// #[repr(C)]
// struct Dup<'a, 'b> {
// a: PhantomData<&'a u8>,
// b: PhantomData<&'b u8>,
// }
//
// error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned`
// --> src/main.rs:6:10
// |
// 6 | #[derive(Unaligned)]
// | ^^^^^^^^^
// |
// = note: required by `zerocopy::Unaligned`
let type_ident = &input.ident;
let trait_ident = trt.ident();
let field_types = data.field_types();
let bound_tt = |ty| parse_quote!(#ty: ::zerocopy::#trait_ident);
let field_type_bounds: Vec<_> = match (require_trait_bound_on_field_types, &field_types[..]) {
(RequireBoundedFields::Yes, _) => field_types.iter().map(bound_tt).collect(),
(RequireBoundedFields::No, _) | (RequireBoundedFields::Trailing, []) => vec![],
(RequireBoundedFields::Trailing, [.., last]) => vec![bound_tt(last)],
};
// Don't bother emitting a padding check if there are no fields.
#[allow(
unstable_name_collisions, // See `BoolExt` below
clippy::incompatible_msrv, // https://github.com/rust-lang/rust-clippy/issues/12280
)]
let padding_check_bound = padding_check.and_then(|check| (!field_types.is_empty()).then_some(check)).map(|check| {
let fields = field_types.iter();
let validator_macro = check.validator_macro_ident();
parse_quote!(
::zerocopy::macro_util::HasPadding<#type_ident, {::zerocopy::#validator_macro!(#type_ident, #(#fields),*)}>:
::zerocopy::macro_util::ShouldBe<false>
)
});
let self_sized_bound = if require_self_sized { Some(parse_quote!(Self: Sized)) } else { None };
let bounds = input
.generics
.where_clause
.as_ref()
.map(|where_clause| where_clause.predicates.iter())
.into_iter()
.flatten()
.chain(field_type_bounds.iter())
.chain(padding_check_bound.iter())
.chain(self_sized_bound.iter());
// The parameters with trait bounds, but without type defaults.
let params = input.generics.params.clone().into_iter().map(|mut param| {
match &mut param {
GenericParam::Type(ty) => ty.default = None,
GenericParam::Const(cnst) => cnst.default = None,
GenericParam::Lifetime(_) => {}
}
quote!(#param)
});
// The identifiers of the parameters without trait bounds or type defaults.
let param_idents = input.generics.params.iter().map(|param| match param {
GenericParam::Type(ty) => {
let ident = &ty.ident;
quote!(#ident)
}
GenericParam::Lifetime(l) => {
let ident = &l.lifetime;
quote!(#ident)
}
GenericParam::Const(cnst) => {
let ident = &cnst.ident;
quote!({#ident})
}
});
quote! {
// TODO(#553): Add a test that generates a warning when
// `#[allow(deprecated)]` isn't present.
#[allow(deprecated)]
unsafe impl < #(#params),* > ::zerocopy::#trait_ident for #type_ident < #(#param_idents),* >
where
#(#bounds,)*
{
fn only_derive_is_allowed_to_implement_this_trait() {}
#extras
}
}
}
fn print_all_errors(errors: Vec<Error>) -> proc_macro2::TokenStream {
errors.iter().map(Error::to_compile_error).collect()
}
// A polyfill for `Option::then_some`, which was added after our MSRV.
//
// TODO(#67): Remove this once our MSRV is >= 1.62.
#[allow(unused)]
trait BoolExt {
fn then_some<T>(self, t: T) -> Option<T>;
}
#[allow(unused)]
impl BoolExt for bool {
fn then_some<T>(self, t: T) -> Option<T> {
if self {
Some(t)
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_config_repr_orderings() {
// Validate that the repr lists in the various configs are in the
// canonical order. If they aren't, then our algorithm to look up in
// those lists won't work.
// TODO(https://github.com/rust-lang/rust/issues/53485): Remove once
// `Vec::is_sorted` is stabilized.
fn is_sorted_and_deduped<T: Clone + Ord>(ts: &[T]) -> bool {
let mut sorted = ts.to_vec();
sorted.sort();
sorted.dedup();
ts == sorted.as_slice()
}
fn elements_are_sorted_and_deduped<T: Clone + Ord>(lists: &[&[T]]) -> bool {
lists.iter().all(|list| is_sorted_and_deduped(list))
}
fn config_is_sorted<T: KindRepr + Clone>(config: &Config<T>) -> bool {
elements_are_sorted_and_deduped(config.allowed_combinations)
&& elements_are_sorted_and_deduped(config.disallowed_but_legal_combinations)
}
assert!(config_is_sorted(&STRUCT_UNION_UNALIGNED_CFG));
assert!(config_is_sorted(&ENUM_FROM_BYTES_CFG));
assert!(config_is_sorted(&ENUM_UNALIGNED_CFG));
}
#[test]
fn test_config_repr_no_overlap() {
// Validate that no set of reprs appears in both the
// `allowed_combinations` and `disallowed_but_legal_combinations` lists.
fn overlap<T: Eq>(a: &[T], b: &[T]) -> bool {
a.iter().any(|elem| b.contains(elem))
}
fn config_overlaps<T: KindRepr + Eq>(config: &Config<T>) -> bool {
overlap(config.allowed_combinations, config.disallowed_but_legal_combinations)
}
assert!(!config_overlaps(&STRUCT_UNION_UNALIGNED_CFG));
assert!(!config_overlaps(&ENUM_FROM_BYTES_CFG));
assert!(!config_overlaps(&ENUM_UNALIGNED_CFG));
}
}